ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - Kai Yuan , Da Kuang 2021
Autocomplete (a.k.a Query Auto-Completion, AC) suggests full queries based on a prefix typed by customer. Autocomplete has been a core feature of commercial search engine. In this paper, we propose a novel context-aware neural network based pairwise ranker (DeepPLTR) to improve AC ranking, DeepPLTR leverages contextual and behavioral features to rank queries by minimizing a pairwise loss, based on a fully-connected neural network structure. Compared to LambdaMART ranker, DeepPLTR shows +3.90% MeanReciprocalRank (MRR) lift in offline evaluation, and yielded +0.06% (p < 0.1) Gross Merchandise Value (GMV) lift in an Amazons online A/B experiment.
Federated learning can enable remote workers to collaboratively train a shared machine learning model while allowing training data to be kept locally. In the use case of wireless mobile devices, the communication overhead is a critical bottleneck due to limited power and bandwidth. Prior work has utilized various data compression tools such as quantization and sparsification to reduce the overhead. In this paper, we propose a predictive coding based communication scheme for federated learning. The scheme has shared prediction functions among all devices and allows each worker to transmit a compressed residual vector derived from the reference. In each communication round, we select the predictor and quantizer based on the rate-distortion cost, and further reduce the redundancy with entropy coding. Extensive simulations reveal that the communication cost can be reduced up to 99% with even better learning performance when compared with other baseline methods.
76 - Chenpeng Du , Kai Yu 2021
Generating natural speech with diverse and smooth prosody pattern is a challenging task. Although random sampling with phone-level prosody distribution has been investigated to generate different prosody patterns, the diversity of the generated speec h is still very limited and far from what can be achieved by human. This is largely due to the use of uni-modal distribution, such as single Gaussian, in the prior works of phone-level prosody modelling. In this work, we propose a novel approach that models phone-level prosodies with a GMM-based mixture density network and then extend it for multi-speaker TTS using speaker adaptation transforms of Gaussian means and variances. Furthermore, we show that we can clone the prosodies from a reference speech by sampling prosodies from the Gaussian components that produce the reference prosodies. Our experiments on LJSpeech and LibriTTS dataset show that the proposed GMM-based method not only achieves significantly better diversity than using a single Gaussian in both single-speaker and multi-speaker TTS, but also provides better naturalness. The prosody cloning experiments demonstrate that the prosody similarity of the proposed GMM-based method is comparable to recent proposed fine-grained VAE while the target speaker similarity is better.
In recent years, image and video surveillance have made considerable progresses to the Intelligent Transportation Systems (ITS) with the help of deep Convolutional Neural Networks (CNNs). As one of the state-of-the-art perception approaches, detectin g the interested objects in each frame of video surveillance is widely desired by ITS. Currently, object detection shows remarkable efficiency and reliability in standard scenarios such as daytime scenes with favorable illumination conditions. However, in face of adverse conditions such as the nighttime, object detection loses its accuracy significantly. One of the main causes of the problem is the lack of sufficient annotated detection datasets of nighttime scenes. In this paper, we propose a framework to alleviate the accuracy decline when object detection is taken to adverse conditions by using image translation method. We propose to utilize style translation based StyleMix method to acquire pairs of day time image and nighttime image as training data for following nighttime to daytime image translation. To alleviate the detail corruptions caused by Generative Adversarial Networks (GANs), we propose to utilize Kernel Prediction Network (KPN) based method to refine the nighttime to daytime image translation. The KPN network is trained with object detection task together to adapt the trained daytime model to nighttime vehicle detection directly. Experiments on vehicle detection verified the accuracy and effectiveness of the proposed approach.
332 - Chenpeng Du , Kai Yu 2021
Generating natural speech with diverse and smooth prosody pattern is a challenging task. Although random sampling with phone-level prosody distribution has been investigated to generate different prosody patterns, the diversity of the generated speec h is still very limited and far from what can be achieved by human. This is largely due to the use of uni-modal distribution, such as single Gaussian, in the prior works of phone-level prosody modelling. In this work, we propose a novel approach that models phone-level prosodies with GMM based mixture density network (GMM-MDN). Experiments on the LJSpeech dataset demonstrate that phone-level prosodies can precisely control the synthetic speech and GMM-MDN can generate more natural and smooth prosody pattern than a single Gaussian. Subjective evaluations further show that the proposed approach not only achieves better naturalness, but also significantly improves the prosody diversity in synthetic speech without the need of manual control.
Useful information (UI) is an elusive concept in neural networks. A quantitative measurement of UI is absent, despite the variations of UI can be recognized by prior knowledge. The communication bandwidth of feature maps decreases after downscaling o perations, but UI flows smoothly after training due to lower Nyquist frequency. Inspired by the low-Nyqusit-frequency nature of UI, we propose the use of spectral roll-off points (SROPs) to estimate UI on variations. The computation of an SROP is extended from a 1-D signal to a 2-D image by the required rotation invariance in image classification tasks. SROP statistics across feature maps are implemented as layer-wise useful information estimates. We design sanity checks to explore SROP variations when UI variations are produced by variations in model input, model architecture and training stages. The variations of SROP is synchronizes with UI variations in various randomized and sufficiently trained model structures. Therefore, SROP variations is an accurate and convenient sign of UI variations, which promotes the explainability of data representations with respect to frequency-domain knowledge.
110 - Qiuyuan Wang , Yi Zeng , Kai Yuan 2020
Flexible manipulation of local magnetic configurations on the sub-micro scale has long been a pursuit in the field of magnetism science owing to its potential applications in future spintronic devices. This goal can be achieved by using current-induc ed spin torque to drive the magnetic domain walls. However, the current density threshold of 10^6-10^8 A/cm^2 in metallic systems induced by intrinsic and extrinsic pinning effects increases the energy consumption of the device and limits its application. The marriage between magnetism and topology opens a door for efficient magnetism manipulation, but to date, complex structures (such as multilayer film structures) are still required. Here, we report a unique process of magnetism modulation in the recently discovered magnetic Weyl semimetal Co3Sn2S2 through current-assisted domain wall depinning. Non-adiabatic spin-transfer torques, which are induced by current and significantly modulated by the linear dispersion of Weyl fermions, impose on the local magnetic moments inside the domain walls, leading to a greatly improved efficiency of domain wall motion in magnetic Weyl semimetals compared with conventional metals. By analysing the changes of hysteresis loops under different DC currents, a low current threshold of 1.5*10^5 A/cm^2, and two orders of magnitude improvement of depinning efficiency are obtained in this single material layer. The high efficiency to drive domain walls by current suggests that magnetic Weyl semimetal is a hopeful material system for realizing low-energy consumption spintronic devices.
Prediction markets are powerful tools to elicit and aggregate beliefs from strategic agents. However, in current prediction markets, agents may exhaust the social welfare by competing to be the first to update the market. We initiate the study of the trade-off between how quickly information is aggregated by the market, and how much this information costs. We design markets to aggregate timely information from strategic agents to maximize social welfare. To this end, the market must incentivize agents to invest the correct amount of effort to acquire information: quickly enough to be useful, but not faster (and more expensively) than necessary. The market also must ensure that agents report their information truthfully and on time. We consider two settings: in the first, information is only valuable before a deadline; in the second, the value of information decreases as time passes. We use both theorems and simulations to demonstrate the mechanisms.
This paper studies the impact of imperfect information in online control with adversarial disturbances. In particular, we consider both delayed state feedback and inexact predictions of future disturbances. We introduce a greedy, myopic policy that y ields a constant competitive ratio against the offline optimal policy with delayed feedback and inexact predictions. A special case of our result is a constant competitive policy for the case of exact predictions and no delay, a previously open problem. We also analyze the fundamental limits of online control with limited information by showing that our competitive ratio bounds for the greedy, myopic policy in the adversarial setting match (up to lower-order terms) lower bounds in the stochastic setting.
We study the impact of predictions in online Linear Quadratic Regulator control with both stochastic and adversarial disturbances in the dynamics. In both settings, we characterize the optimal policy and derive tight bounds on the minimum cost and dy namic regret. Perhaps surprisingly, our analysis shows that the conventional greedy MPC approach is a near-optimal policy in both stochastic and adversarial settings. Specifically, for length-$T$ problems, MPC requires only $O(log T)$ predictions to reach $O(1)$ dynamic regret, which matches (up to lower-order terms) our lower bound on the required prediction horizon for constant regret.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا