ترغب بنشر مسار تعليمي؟ اضغط هنا

We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hu bble Space Telescope and Keck 2 laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1,600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 x 10^17 to 2 x 10^22 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual or-bits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retro-grade, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.
Hubble Space Telescope observations of Uranus- and Neptune-crossing object (65489) Ceto/Phorcys (provisionally designated 2003 FX128) reveal it to be a close binary system. The mutual orbit has a period of 9.554 +/- 0.011 days and a semimajor axis of 1840 +/- 48 km. These values enable computation of a system mass of (5.41 +/- 0.42) 10^18 kg. Spitzer Space Telescope observations of thermal emission at 24 and 70 microns are combined with visible photometry to constrain the systems effective radius (109 +10/-11 km) and geometric albedo (0.084 +0.021/-0.014). We estimate the average bulk density to be 1.37 +0.66/-0.32 g cm^-3, consistent with ice plus rocky and/or carbonaceous materials. This density contrasts with lower densities recently measured with the same technique for three other comparably-sized outer Solar System binaries (617) Patroclus, (26308) 1998 SM165, and (47171) 1999 TC36, and is closer to the density of the saturnian irregular satellite Phoebe. The mutual orbit of Ceto and Phorcys is nearly circular, with an eccentricity <= 0.015. This observation is consistent with calculations suggesting that the system should tidally evolve on a timescale shorter than the age of the solar system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا