ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we investigate the scalar Aharonov-Bohm (AB) effect in two of its forms, i.e., its electric form and its gravitational form. The standard form of the electric AB effect involves having particles (such as electrons) move in regions with zero electric field but different electric potentials. When a particle is recombined with itself, it will have a different phase, which can show up as a change in the way the single particle interferes with itself when it is recombined with itself. In the case where one has quasi-static fields and potentials, the particle will invariably encounter fringing fields, which makes the theoretical and experimental status of the electric AB effect much less clear than that of the magnetic (or vector) AB effect. Here we propose using time varying fields outside of a spherical shell, and potentials inside a spherical shell to experimentally test the scalar AB effect. In our proposal a quantum system will always be in a field-free region but subjected to a non-zero time-varying potentials. Furthermore, our system will not be spatially split and brought back together as in the magnetic AB experiment. Therefore there is no spatial interference and hence no shift in a spatial interference pattern to observe. Rather, there arises purely temporal interference phenomena. As in the magnetic AB experiments, these effects are non-classical. We present t
410 - K.M. Sundqvist , P. Delsing 2013
A Superconducting QUantum Interference Device (SQUID) modulated by a fast oscillating magnetic flux can be used as a parametric amplifier, providing gain with very little added noise. Here, we develop linearized models to describe the parametrically flux-pumped SQUID in terms of an impedance. An unpumped SQUID acts as an inductance, the Josephson inductance, whereas a flux-pumped SQUID develops an additional, parallel element which we have coined the ``pumpistor. Parametric gain can be understood as a result of a negative resistance of the pumpistor. In the degenerate case, the gain is sensitive to the relative phase between the pump and signal. In the nondegenerate case, gain is independent of this phase. We develop our models first for degenerate parametric pumping in the three-wave and four-wave cases, where the pump frequency is either twice or equal to the signal frequency, respectively. We then derive expressions for the nondegenerate case where the pump frequency is not a multiple of the signal frequency, where it becomes necessary to consider idler tones which develop. For the nondegenerate three-wave case, we present an intuitive picture for a parametric amplifier containing a flux-pumped SQUID where current at the signal frequency depends upon the load impedance at an idler frequency. This understanding provides insight and readily testable predictions of circuits containing flux-pumped SQUIDs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا