ترغب بنشر مسار تعليمي؟ اضغط هنا

Driven by the needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, and their experiments, the event generators of the MARS15 code have been recently improved. After thorough analysis and benchmarking agai nst data, including the newest ones by the HARP collaboration, both the exclusive and inclusive particle production models were further developed in the crucial for the above projects - but difficult from a theoretical standpoint - projectile energy region of 0.7 to 12 GeV. At these energies, modelling of prompt particle production in nucleon-nucleon and pion-nucleon inelastic reactions is now based on a combination of phase-space and isobar models. Other reactions are still modeled in the framework of the Quark-Gluon String Model. Pion, kaon and strange particle production and propagation in nuclear media are improved. For the alternative inclusive mode, experimental data on large-angle (> 20 degrees) pion production in hadron-nucleus interactions are parameterized in a broad energy range using a two-source model. It is mixed-and-matched with the native MARS model that successfully describes low-angle pion production data. Predictions of both new models are - in most cases - in a good agreement with experimental data obtained at CERN, JINR, LANL, BNL and KEK.
We study the formation of large hyper-fragments in relativistic heavy-ion collisions within two transport models, DCM and UrQMD. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semi-peripheral collisions. We investigate basic characteristics of the produced hyper-spectators and evaluate the production probabilities of multi-strange systems. Advantages of the proposed mechanisms over an alternative coalescence mechanism are analysed. We also discuss how such systems can be detected taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hyper-nuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا