ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of a multiwavelength study of the z=0.23 radio source PKS1932-46. VIMOS IFU spectroscopy is used to study the morphology, kinematics and ionisation state of the EELR surrounding this source, and also a companion galaxy at a sim ilar redshift. Near- and far-IR imaging observations obtained using the NTT and SPITZER are used to analyse the underlying galaxy morphologies and the nature of the AGN. The host galaxy is identified as an ~M* elliptical. Combining Spitzer mid-IR with X-ray, optical and near-IR imaging observations of this source, we conclude that its AGN is underluminous for a radio source of this type, despite its status as a BLRG. However, given its relatively large [OIII] luminosity it is likely that the AGN was substantially more luminous in the recent past (<10^4 years ago). The EELR is remarkably extensive and complex, reminiscent of the systems observed around sources at higher redshifts/radio powers, and the gas is predominantly ionised by a mixture of AGN photoionisation and emission from young stars. We confirm the presence of a series of star-forming knots extending N-S from the host galaxy, with more prodigious star formation occuring in the merging companion galaxy to the northeast, which has sufficient luminosity at mid- to far-IR wavelengths to be classified as a LIRG. The most plausible explanation of our observations is that PKS1932-46 is a member of an interacting galaxy group, and that the impressive EELR is populated by star-forming, tidal debris. We suggest that the AGN itself may currently be fuelled by material associated either with the current interaction, or with a previous merger event. Surprisingly, it is the companion object, rather than the radio source host galaxy, which is undergoing the bulk of the star formation activity within the group.
We present the results of spectroscopic and imaging observations of the FRII radio galaxies PKS2250-41 and PKS1932-46. Both sources display very extensive emission line regions, and appear to be undergoing interactions with companion bodies. In addit ion to disturbed gas kinematics associated with interactions with the radio source, the more distant emitting material displays simple, narrow emission line profiles, often at significant velocity offsets from the system rest-frame, and may be associated with tidal debris.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا