ترغب بنشر مسار تعليمي؟ اضغط هنا

We review the current status of the global DGLAP analysis of nuclear parton distribution functions, nPDFs, focusing on the recent EPS09 analysis, whose output, EPS09NLO, is the best-constrained NLO nPDF set on the market. Collinear factorization is f ound to work very well in the kinematical region studied. With the error sets released in the EPS09 package one can compute how the nPDF-related uncertainties propagate into factorizable nuclear hard-process cross sections. A comparison with the other existing NLO nPDF sets is shown, and the BRAHMS forward-$eta$ hadron data from d+Au collisions are discussed in the light of the EPS09 nPDFs and their error sets.
We compute the initial energy density and net baryon number density in 5% most central Pb+Pb collisions at $sqrt s=5.5$ TeV from pQCD + (final state) saturation, and describe the evolution of the produced system with boost-invariant transversely expa nding hydrodynamics. In addition to the total multiplicity at midrapidity, we give predictions for the multiplicity of charged hadrons, pions, kaons and (anti)protons, for the total transverse energy and net-baryon number, as well as for the $p_T$-spectrum of charged hadrons, pions and kaons. We also predict the region of applicability of hydrodynamics by comparing these results with high-$p_T$ hadron spectra computed from pQCD and energy losses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا