ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering s pectrometry, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. The material becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is observed at x greater than or equal to 0.65, but only when the films are deposited with in-plane compression via lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV (DFT + U). Resistivity data in the semiconducting regime (x less than or equal to 0.50) do not fit perfectly well to either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid model. The activation energies extracted from these fits are well reproduced by DFT + U.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا