ترغب بنشر مسار تعليمي؟ اضغط هنا

79 - K.D. Denney 2014
We present multi-wavelength observations that trace more than 40 years in the life of the active galactic nucleus (AGN) in Mrk 590, traditionally known as a classic Seyfert 1 galaxy. From spectra recently obtained from HST, Chandra, and the Large Bin ocular Telescope, we find that the activity in the nucleus of Mrk 590 has diminished so significantly that the continuum luminosity is a factor of 100 lower than the peak luminosity probed by our long baseline observations. Furthermore, the broad emission lines, once prominent in the UV/optical spectrum, have all but disappeared. Since AGN type is defined by the presence of broad emission lines in the optical spectrum, our observations demonstrate that Mrk 590 has now become a changing look AGN. If classified by recent optical spectra, Mrk 590 would be a Seyfert ~1.9-2, where the only broad emission line still visible in the optical spectrum is a weak component of Halpha. As an additional consequence of this change, we have definitively detected UV narrow-line components in a Type 1 AGN, allowing an analysis of these emission-line components with high-resolution COS spectra. These observations challenge the historical paradigm that AGN type is only a consequence of the line of sight viewing angle toward the nucleus in the presence of a geometrically-flattened, obscuring medium (i.e., the torus). Our data instead suggest that the current state of Mrk 590 is a consequence of the change in luminosity, which implies the black hole accretion rate has significantly decreased.
The narrow [O III] 4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow line-emitting region has a radius of only 1-3 pc and is denser (n ~ 10^5 c m^{-3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass.Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hbeta emission-line light curves for the period 1988 to 2008.
Using a sample of high-redshift lensed quasars from the CASTLES project with observed-frame ultraviolet or optical and near-infrared spectra, we have searched for possible biases between supermassive black hole (BH) mass estimates based on the CIV, H alpha and Hbeta broad emission lines. Our sample is based upon that of Greene, Peng & Ludwig, expanded with new near-IR spectroscopic observations, consistently analyzed high S/N optical spectra, and consistent continuum luminosity estimates at 5100A. We find that BH mass estimates based on the FWHM of CIV show a systematic offset with respect to those obtained from the line dispersion, sigma_l, of the same emission line, but not with those obtained from the FWHM of Halpha and Hbeta. The magnitude of the offset depends on the treatment of the HeII and FeII emission blended with CIV, but there is little scatter for any fixed measurement prescription. While we otherwise find no systematic offsets between CIV and Balmer line mass estimates, we do find that the residuals between them are strongly correlated with the ratio of the UV and optical continuum luminosities. Removing this dependency reduces the scatter between the UV- and optical-based BH mass estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The dispersion is smallest when comparing the CIV sigma_l mass estimate, after removing the offset from the FWHM estimates, and either Balmer line mass estimate. The correlation with the continuum slope is likely due to a combination of reddening, host contamination and object-dependent SED shapes. When we add additional heterogeneous measurements from the literature, the results are unchanged.
119 - K.D. Denney 2009
We present the first results from a high sampling rate, multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs. We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity - the R_BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hbeta emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR = 1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52) x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L relationship, based on the present luminosity of NGC 4051 and the most current calibration of the relation by Bentz et al. (2009a). We also present a preliminary look at velocity-resolved Hbeta light curves and time delay measurements, although we are unable to reconstruct an unambiguous velocity-resolved reverberation signal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا