ترغب بنشر مسار تعليمي؟ اضغط هنا

Total cross sections for proton- and deuteron-induced-fission of 208Pb and 238U have been determined in the energy range between 500 MeV and 1 GeV. The experiment has been performed in inverse kinematics at GSI Darmstadt, facilitating the counting of the projectiles and the identification of the reaction products. High precision between 5 and 7 percent has been achieved by individually counting the beam particles and by registering both fission fragments in coincidence with high efficiency and full Z resolution. Fission was clearly distinguished from other reaction channels. The results were found to deviate by up to 30 percent from Prokofievs systematics on total fission cross sections. There is good agreement with an elaborate experiment performed in direct kinematics.
48 - K.-H. Schmidt 2008
The problem of an apparent inconsistency between the fission rates derived on the basis of Bohr-Wheelers transition-state method and Kramers dynamical model of nuclear fission, first pointed out by Strutinsky in 1973, is revisited. The study is based on studying the features of individual trajectories on the fission path.
This paper presents the nuclide cross sections and the longitudinal velocity distributions of residues produced in the reactions of 136Xe and 124Xe at 1 A GeV in a lead target, measured at the high-resolution magnetic spectrometer, the Fragment Separ ator (FRS) of GSI. The data cover a broad range of isotopes of the elements between Z = 3 and Z = 56 for 136Xe and between Z = 5 and Z = 55 for 124Xe, reaching down to cross sections of a few microbarns. The velocity distributions exhibit a Gaussian shape for masses above A = 20, while more complex behaviour is observed for lighter masses. The isotopic distributions for both reactions preserve a memory on the projectile N/Z ratio over the whole residue mass range.
Nuclear fission of several neutron-deficient actinides and pre-actinides from excitation energies around 11 MeV was studied at GSI Darmstadt by use of relativistic secondary beams. The characteristics of multimodal fission of nuclei around 226Th are systematically investigated and interpreted as the superposition of three fission channels. Properties of these fission channels have been determined for 15 systems. A global view on the properties of fission channels including previous results is presented. The positions of the asymmetric fission channels are found to be constant in element number over the whole range of systems investigated.
This paper reports the first application of a new technique to measure the beta-decay half -lives of exotic nuclei in complex background conditions. Since standard tools were not adapted to extract the relevant information, a new analysis method was developed. The time distribution of background events is established by recording time correlations in backward time. The beta half lives of the nuclides and the detection efficiency of the set-up are determined simultaneously from a least-squares fit of the ratio of the time-correlation spectra recorded in forward and in backward time, using numerical functions. The necessary numerical functions are calculated in a Monte-Carlo code using the known operation parameters of the experiment and different values for the two free parameters, half-life and detection efficiency, as input parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا