ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Spitzer IRAC $3.6-8$um and MIPS $24$um point-source catalogs for seven galaxies: NGC$6822$, M$33$, NGC$300$, NGC$2403$, M$81$, NGC$0247$, and NGC$7793$. The catalogs contain a total of $sim300,000$ sources and were created by dual-band sel ection of sources with $>3sigma$ detections at both $3.6$um and $4.5$um. The source lists become significantly incomplete near $m_{3.6}=m_{4.5}simeq18$. We complement the $3.6$um and $4.5$um fluxes with $5.8$um, $8.0$um and $24$um fluxes or $3sigma$ upper limits using a combination of PSF and aperture photometry. This catalog is a resource as an archive for studying mid-infrared transients and for planning observations with the James Webb Space Telescope.
79 - X. Dai 2009
Using the 2.4m MDM and 8.4m Large Binocular Telescope, we observed nine GRB afterglows to systematically probe the late time behaviors of afterglows including jet breaks, flares, and supernova bumps. In particular, the LBT observations have typical f lux limits of 25-26 mag in the Sloan r band, which allows us to extend the temporal baseline for measuring jet breaks by another decade in time scale. We detected four jet breaks (including a textbook jet break in GRB070125) and a fifth candidate, all of which are not detectable without deep, late time optical observations. In the other four cases, we do not detect the jet breaks either because of contamination from the host galaxy light, the presence of a supernova bump, or the intrinsic faintness of the optical afterglow. This suggests that the basic picture that GRBs are collimated is still valid and that the apparent lack of Swift jet breaks is due to poorly sampled afterglow light curves, particularly at late times. Besides the jet breaks, we also detected late time flares, which could attribute to late central engine activities, and two supernova bumps.
Low mass helium-core white dwarfs (M < 0.45 Msun) can be produced from interacting binary systems, and traditionally all of them have been attributed to this channel. However, a low mass white dwarf could also result from a single star that experienc es severe mass loss on the first ascent giant branch. A large population of low mass He-core white dwarfs has been discovered in the old metal-rich cluster NGC 6791. There is therefore a mechanism in clusters to produce low mass white dwarfs without requiring binary star interactions, and we search for evidence of a similar population in field white dwarfs. We argue that there is a significant field population (of order half of the detected systems) that arises from old metal rich stars which truncate their evolution prior to the helium flash from severe mass loss. There is a consistent absence of evidence for nearby companions in a large fraction of low mass white dwarfs. The number of old metal-rich field dwarfs is also comparable with the apparently single low mass white dwarf population, and our revised estimate for the space density of low mass white dwarfs produced from binary interactions is also compatible with theoretical expectations. This indicates that this channel of stellar evolution, hitherto thought hypothetical only, has been in operation in our own Galaxy for many billions of years. One strong implication of our model is that single low mass white dwarfs should be good targets for planet searches because they are likely to arise from metal-rich progenitors. We also discuss other observational tests and implications, including the potential impact on SN Ia rates and the frequency of planetary nebulae.
In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ -7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 272 days and the light curve is well-fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed by two yellow supergiants (V-I ~ 1 mag, T_eff = 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however note a second example. The SMC F0 supergiant R47 is a bright (MV ~ -7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well-fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage. We also discuss the possibility of this variable being a long-period Cepheid.
The Kilodegree Extremely Little Telescope (KELT) project is a small aperture, wide-angle search for planetary transits of solar-type stars. In this paper, we present the results of a commissioning campaign with the KELT telescope to observe the open cluster Praesepe for 34 nights in early 2005. Lightcurves were obtained for 69,337 stars, out of which we identify 58 long period variables and 152 periodic variables. Sixteen of these are previously known as variable, yielding 194 newly discovered variable stars for which we provide properties and lightcurves. We also searched for planetary-like transits, finding four transit candidates. Follow-up observations indicate that two of the candidates are astrophysical false positives, with two candidates remaining as potential planetary transits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا