ترغب بنشر مسار تعليمي؟ اضغط هنا

The electron spin resonance spectrum of a quasi 1D S=1/2 antiferromagnet K2CuSO4Br2 was found to demonstrate an energy gap and a doublet of resonance lines in a wide temperature range between the Curie--Weiss and Ne`{e}l temperatures. This type of ma gnetic resonance absorption corresponds well to the two-spinon continuum of excitations in S=1/2 antiferromagnetic spin chain with a uniform Dzyaloshinskii--Moriya interaction between the magnetic ions. A resonance mode of paramagnetic defects demonstrating strongly anisotropic behavior due to interaction with spinon excitations in the main matrix is also observed.
The current-voltage characteristics of a porous superconductor Bi2Sr2Ca2Cu3Ox (Bi2223) have been measured at temperature range from 10 to 90 K. The experimental dependences have been analyzed within the model allowing for pinning by clusters of a nor mal phase with fractal boundaries, as well as the model taking into account phase transformations of vortex matter. It has been found that the electrical resistance of the superconductor material significantly increases at temperatures of 60-70 K over the entire range of magnetic fields under consideration without changing in the sign of the curvature of the R(I) dependence. The melting of the vortex structure occurs at these temperatures. It has been assumed that this behavior is associated with the specific feature of the pinning in a highly porous high-temperature superconductor, which lies in the fractal distribution of pinning centers in a wide range of self-similarity scales.
The smaller the system, typically - the higher is the impact of fluctuations. In narrow superconducting wires sufficiently close to the critical temperature Tc thermal fluctuations are responsible for the experimentally observable finite resistance. Quite recently it became possible to fabricate sub-10 nm superconducting structures, where the finite resistivity was reported within the whole range of experimentally obtainable temperatures. The observation has been associated with quantum fluctuations capable to quench zero resistivity in superconducting nanowires even at temperatures T-->0. Here we demonstrate that in tiny superconducting nanorings the same phenomenon is responsible for suppression of another basic attribute of superconductivity - persistent currents - dramatically affecting their magnitude, the period and the shape of the current-phase relation. The effect is of fundamental importance demonstrating the impact of quantum fluctuations on the ground state of a macroscopically coherent system, and should be taken into consideration in various nanoelectronic applications.
We study the dynamics of vortices in an asymmetric ring channel driven by an external current I in a Corbino setup. The asymmetric potential can rectify the motion of vortices and cause a net flow without any unbiased external drive, which is called ratchet effect. With an applied ac current, the potential can rectify the motion of vortices in the channel and induce a dc net flow. We show that the net flow of vortices strongly depends on vortex density and frequency of the driving current. Depending on the density, we distinguish a single-vortex rectification regime (low density) determined by the potential-energy landscape inside each cell of the channel (i.e., hard and easy directions of motion) and multi-vortex, or collective, rectification (high density) when the interaction between vortices becomes important. The frequency of the driving ac current determines a possible distance that a vortex could move during one period. For high frequency current, vortices only oscillate in the triangular cell. For low frequency, the vortex angular velocity $omega$ increases nearly linearly until the driving force reaches the maximum friction force in the hard direction. Furthermore, the commensurability between the number of vortices and the number of cells results in a stepwise $omega-I$ curve. Besides the integer steps, i.e., the large steps found in the single vortex case, we also found fractional steps corresponding to fractional ratio between the numbers of vortices and triangular cells. The principal and fractional frequencies for different currents are found, when the net flow of vortices reaches the maximum that is proportional to the frequency when the density of vortices is low. We have performed preliminary measurements on a device containing a single weak-pinning circular ratchet channel in a Corbino geometry and observed a substantial asymmetric vortex response.
122 - M.P. DeFeo , P. Bhupathi , K. Yu 2010
We present measurements of an amplifier based on a dc superconducting quantum interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The small junction size reduces their self-capacitance and allows for the use of relatively large resistive shunts while maintaining nonhysteretic operation. This leads to an enhancement of the SQUID transfer function compared to SQUIDs with micron-scale junctions. The device layout is modified from that of a conventional SQUID to allow for coupling signals into the amplifier with a substantial mutual inductance for a relatively short microstrip coil. Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.
167 - K. Yu 2010
Vortices confined to superconducting easy flow channels with periodic constrictions exhibit reversible oscillations in the critical current at which vortices begin moving as the external magnetic field is varied. This commensurability scales with the channel shape and arrangement, although screening effects play an important role. For large magnetic fields, some of the vortices become pinned outside of the channels, leading to magnetic hysteresis in the critical current. Some channel configurations also exhibit a dynamical hysteresis in the flux-flow regime near the matching fields.
89 - T.W. Heitmann 2008
We have developed a picovoltmeter using a Nb dc Superconducting QUantum Interference Device (SQUID) for measuring the flux-flow voltage from a small number of vortices moving through a submicron weak-pinning superconducting channel. We have applied t his picovoltmeter to measure the vortex response in a single channel arranged in a circle on a Corbino disk geometry. The circular channel allows the vortices to follow closed orbits without encountering any sample edges, thus eliminating the influence of entry barriers.
219 - K. Yu 2008
The controlled motion of objects through narrow channels is important in many fields. We have fabricated asymmetric weak-pinning channels in a superconducting thin-film strip for controlling the dynamics of vortices. The lack of pinning allows the vo rtices to move through the channels with the dominant interaction determined by the shape of the channel walls. We present measurements of vortex dynamics in the channels and compare these with similar measurements on a set of uniform-width channels. While the uniform-width channels exhibit a symmetric response for both directions through the channel, the vortex motion through the asymmetric channels is quite different, with substantial asymmetries in both the static depinning and dynamic flux flow. This vortex ratchet effect has a rich dependence on magnetic field and driving force amplitude.
We describe the evolution of a paraxial electromagnetic wave characterizing by a non-uniform polarization distribution with singularities and propagating in a weakly anisotropic medium. Our approach is based on the Stokes vector evolution equation ap plied to a non-uniform initial polarization field. In the case of a homogeneous medium, this equation is integrated analytically. This yields a 3-dimensional distribution of the polarization parameters containing singularities, i.e. C-lines of circular polarization and L-surfaces of linear polarization. The general theory is applied to specific examples of the unfolding of a vectorial vortex in birefringent and dichroic media.
We consider semiclassical higher-order wave packet solutions of the Schrodinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) $hbar l $ ($l$ is the vortex strength) along its main linear momentum. The probability current coils around momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin $l$. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا