ترغب بنشر مسار تعليمي؟ اضغط هنا

244 - K. Somiya , J. Kato , K. Yano 2014
An optical cavity consisting of optically trapped mirrors makes a resonant bar that can be stiffer than diamond. A limitation of the stiffness arises in the length of the optical bar as a consequence of the finite light speed. High laser power and li ght mass mirrors are essential for realization of a long and stiff optical bar that can be useful for example in the gravitational-wave detector aiming at the observation of a signal from neutron-star collisions, supernovae, etc. In this letter, we introduce a parametric signal amplification scheme that realizes the long and stiff optical bar without the need to increase the laser power.
To identify the superconducting gap structure in URu2Si2 we perform field-angle-dependent specific heat measurements for the two principal orientations in addition to field rotations, and theoretical analysis based on microscopic calculations. The So mmerfeld coefficient gamma(H)s in the mixed state exhibit distinctively different field-dependence. This comes from point nodes and substantial Pauli paramagnetic effect of URu2Si2. These two features combined give rise to a consistent picture of superconducting properties, including a possible first order transition of Hc2 at low temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا