ترغب بنشر مسار تعليمي؟ اضغط هنا

136 - Y. Fukui , K. Torii , A. Ohama 2015
We present distributions of two molecular clouds having velocities of 2 km s$^{-1}$ and 14 km s$^{-1}$ toward RCW 38, the youngest super star cluster in the Milky Way, in the $^{12}$CO ($J=$1--0 and 3--2) and $^{13}$CO ($J=$1--0) transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the $J$=3--2 emission to the $J$=1--0 emission, the bridging feature connecting the two clouds in velocity and their morphological correspondence with the infrared dust emission. The total mass of the clouds and the cluster is too small to gravitationally bind the velocity difference. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the $sim$20 candidate O stars which are localized within $sim$0.3 pc of the cluster center in the 2 km s$^{-1}$ cloud. We suggest that the collision is currently continuing toward part of the 2 km s$^{-1}$ cloud where the bridging feature is localized. This is the third super star cluster alongside of Westerlund2 and NGC3603 where cloud-cloud collision triggered the cluster formation. RCW38 is the most remarkable and youngest cluster, holding a possible sign of on-going O star formation, and is the most promising site where we may be able to witness the moment of O-star formation.
RCW120 is a Galactic HII region having a beautiful ring shape bright in infrared. Our new CO J=1-0 and J=3-2 observations performed with the NANTEN2, Mopra, and ASTE telescopes have revealed that two molecular clouds with a velocity separation of 20k m/s are both physically associated with RCW120. The cloud at -8km/s apparently traces the infrared ring, while the other cloud at -28km/s is distributed just outside the opening of the infrared ring, interacting with the HII region as supported by high kinetic temperature of the molecular gas and by the complementary distribution with the ionized gas. A spherically expanding shell driven by the HII region is usually discussed as the origin of the observed ring structure in RCW120. Our observations, however, indicate no evidence of the expanding motion in the velocity space, being inconsistent with the expanding shell model. We here postulate an alternative that, by applying the model introduced by Habe & Ohta (1992), the exciting O star in RCW120 was formed by a collision between the present two clouds at a colliding velocity ~30km/s. In the model, the observed infrared ring can be interpreted as the cavity created in the larger cloud by the collision, whose inner surface is illuminated by the strong UV radiation after the birth of the O star. We discuss that the present cloud-cloud collision scenario explains the observed signatures of RCW120, i.e., its ring morphology, coexistence of the two clouds and their large velocity separation, and absence of the expanding motion.
We have discovered two molecular features at radial velocities of -35 km/s and 0 km/s toward the infrared Double Helix Nebula (DHN) in the Galactic center with NANTEN2. The two features show good spatial correspondence with the DHN. We have also foun d two elongated molecular ridges at these two velocities distributed vertically to the Galactic plane over 0.8 degree. The two ridges are linked by broad features in velocity and are likely connected physically with each other. The ratio between the 12CO J=2-1 and J=1-0 transitions is 0.8 in the ridges which is larger than the average value 0.5 in the foreground gas, suggesting the two ridges are in the Galactic center. An examination of the K band extinction reveals a good coincidence with the CO 0 km/s ridge and is consistent with a distance of 8 +/-2 kpc. We discuss the possibility that the DHN was created by a magnetic phenomenon incorporating torsional Alfven waves launched from the circumnuclear disk (Morris, Uchida & Do 2006) and present a first estimate of the mass and energy involved in the DHN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا