ترغب بنشر مسار تعليمي؟ اضغط هنا

116 - K. T. Trinh 2010
This paper presents a theoretical derivation of the empirical Blasius power law correlation for the friction factor. The coefficients in this correlation are shown to be dependent on the Reynolds number. Published experimental data is well correlated . Key words: Blasius, friction factor, turbulence, power law, log-law, wall layer
107 - K. T. Trinh 2010
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscom eters. Key words: non-Newtonian, wall shear rate, turbulent, rheometer
81 - K. T. Trinh 2010
In this visualisation, the transition from laminar to turbulent flow is characterised by the intermittent ejection of wall fluid into the outer stream. The normalised thickness of the viscous flow layer reaches an asymptotic value but the physical th ickness drops exponentially after transition. The critical transition pipe Reynolds number can be obtained simply by equating it with the asymptotic value of the normalised thickness of viscous flow layer. Key words: Transition, critical stability Reynolds number, critical transition Reynolds number, non-Newtonian pipe flow
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا