ترغب بنشر مسار تعليمي؟ اضغط هنا

During morphogenesis, the shape of a tissue emerges from collective cellular behaviors, which are in part regulated by mechanical and biochemical interactions between cells. Quantification of force and stress is therefore necessary to analyze the mec hanisms controlling tissue morphogenesis. Recently, a mechanical measurement method based on force inference from cell shapes and connectivity has been developed. It is non-invasive, and can provide space-time maps of force and stress within an epithelial tissue, up to prefactors. We previously performed a comparative study of three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces. In the present study, to further validate and compare the three force inference methods, we tested their robustness by measuring temporal fluctuation of estimated forces. Quantitative data of cell-level dynamics in a developing tissue suggests that variation of forces and stress will remain small within a short period of time ($sim$minutes). Here, we showed that cell-junction tensions and global stress inferred by the Bayesian force inference method varied less with time than those inferred by the method that estimates only tension. In contrast, the amplitude of temporal fluctuations of estimated cell pressures differs less between different methods. Altogether, the present study strengthens the validity and robustness of the Bayesian force-inference method.
In the course of animal development, the shape of tissue emerges in part from mechanical and biochemical interactions between cells. Measuring stress in tissue is essential for studying morphogenesis and its physical constraints. Experimental measure ments of stress reported thus far have been invasive, indirect, or local. One theoretical approach is force inference from cell shapes and connectivity, which is non-invasive, can provide a space-time map of stress and relies on prefactors. Here, to validate force- inference methods, we performed a comparative study of them. Three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces, were tested by using two artificial and two experimental data sets. Our results using different datasets consistently indicate that our Bayesian force inference, by which cell-junction tensions and cell pressures are simultaneously estimated, performs best in terms of accuracy and robustness. Moreover, by measuring the stress anisotropy and relaxation, we cross-validated the force inference and the global annular ablation of tissue, each of which relies on different prefactors. A practical choice of force-inference methods in distinct systems of interest is discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا