ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical stellar interferometers have demonstrated milli-arcsecond resolution with few apertures spaced hundreds of meters apart. To obtain rich direct images, many apertures will be needed, for a better sampling of the incoming wavefront. The coheren t imaging thus achievable improves the sensitivity with respect to the incoherent combination of successive fringed exposures. Efficient use of highly diluted apertures for coherent imaging can be done with pupil densification, a technique also called hypertelescope imaging. Although best done with adaptive phasing, concentrating most energy in a dominant interference peak for a rich direct image of a complex source, such imaging is also possible with random phase errors such as caused by turbulent seeing, using methods such as speckle imaging which uses several short exposure images to reconstruct the true image. We have simulated such observations using an aperture which changes through the night, as naturally happens on Earth with fixed grounded mirror elements, and find that reconstructed images of star clusters and extended objects are of high quality. As part of the study we also estimated the required photon levels for achieving a good signal to noise ratio using such a technique.
69 - K. Saha , I. Paul , K. Sengupta 2009
We compute the tunneling conductance of graphene as measured by a scanning tunneling microscope (STM) with a normal/superconducting tip. We demonstrate that for undoped graphene with zero Fermi energy, the first derivative of the tunneling conductanc e with respect to the applied voltage is proportional to the density of states of the STM tip. We also show that the shape of the STM spectra for graphene doped with impurities depends qualitatively on the position of the impurity atom in the graphene matrix and relate this unconventional phenomenon to the pseudopsin symmetry of the Dirac quasiparticles in graphene. We suggest experiments to test our theory.
57 - A. Ray , P. Das , S. K. Saha 2009
The eigenstate energies of an atom increase under spatial confinement and this effect should also increase the electron density of the orbital electrons at the nucleus thus increasing the decay rate of an electron-capturing radioactive nucleus. We ha ve observed that the orbital electron capture rates of 109In and 110Sn increased by (1.00+-0.17)% and (0.48+-0.25)% respectively when implanted in the small Au lattice versus large Pb lattice. These results have been understood because of the higher compression experienced by the large radioactive atoms due to the spatial confinement in the smaller Au lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا