ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - K. S. Long 2014
Most supernova remnants (SNRs) are old, in the sense that their structure has been profoundly modified by their interaction with the surrounding interstellar medium (ISM). Old SNRs are very heterogenous in terms of their appearance, reflecting differ ences in their evolutionary state, the environments in which SNe explode and in the explosion products. Some old SNRs are seen primarily as a result of a strong shock wave interacting with the ISM. Others, the so-called mixed-morphology SNRs, show central concentrations of emission, which may still show evidence of emission from the ejecta. Yet others, the pulsar wind nebulae (PWNe), are seen primarily as a result of emission powered by a pulsar; these SNRs often lack the detectable thermal emission from the primary shock. The underlying goal in all studies of old SNRs is to understand these differences, in terms of the SNe that created them, the nature of the ISM into which they are expanding, and the fundamental physical processes that govern their evolution. Here we identify three areas of study where ASTRO-H can make important contributions. These are constraining abundances and physical processes in mature limb-brightened SNRs, understanding the puzzling nature of mixed-morphology SNRs, and exploring the nature of PWNe. The Soft X-ray Spectrometer (SXS) on-board ASTRO-H will, as a result of its high spectral resolution, be the primary tool for addressing problems associated with old SNRs, supported by hard X-ray observations with the Hard X-ray Imager (HXI) to obtain broad band X-ray coverage.
Approximately 20% of quasi-stellar objects (QSOs) exhibit broad, blue-shifted absorption lines in their ultraviolet spectra. Such features provide clear evidence for significant outflows from these systems, most likely in the form of accretion disk w inds. These winds may represent the quasar mode of feedback that is often invoked in galaxy formation/evolution models, and they are also key to unification scenarios for active galactic nuclei (AGN) and QSOs. To test these ideas, we construct a simple benchmark model of an equatorial, biconical accretion disk wind in a QSO and use a Monte Carlo ionization/radiative transfer code to calculate the ultraviolet spectra as a function of viewing angle. We find that for plausible outflow parameters, sightlines looking directly into the wind cone do produce broad, blue-shifted absorption features in the transitions typically seen in broad absorption line QSOs. However, our benchmark model is intrinsically X-ray weak in order to prevent overionization of the outflow, and the wind does not yet produce collisionally excited line emission at the level observed in non-BAL QSOs. As a first step towards addressing these shortcomings, we discuss the sensitivity of our results to changes in the assumed X-ray luminosity and mass-loss rate, Mdot(wind). In the context of our adopted geometry, Mdot(wind) ~ Mdot(acc) is required in order to produce significant BAL features. The kinetic luminosity and momentum carried by such outflows would be sufficient to provide significant feedback.
85 - S. A. Sim 2008
We use a multi-dimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disk-wind outflow geometries. We focus on the formation of blue-shifted absorption features in the Fe K band and show that line featur es similar to those which have been reported in observations are often produced for lines-of-sight through disk-wind geometries. We also discuss the formation of other spectral features in highly ionized outflows. In particular we show that, for sufficiently high wind densities, moderately strong Fe K emission lines can form and that electron scattering in the flow may cause these lines to develop extended red wings. We illustrate the potential relevance of such models to the interpretation of real X-ray data by comparison with observations of a well-known AGN, Mrk 766.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا