ترغب بنشر مسار تعليمي؟ اضغط هنا

We briefly review the predictions of the thermal model for hadron production in comparison to latest data from RHIC and extrapolate the calculations to LHC energy. Our main emphasis is to confront the model predictions with the recently released data from ALICE at the LHC. This comparison reveals an apparent anomaly for protons and anti-protons which we discuss briefly. We also demonstrate that our statistical hadronization predictions for J/$psi$ production agree very well with the most recent LHC data, lending support to the picture in which there is complete charmonium melting in the quark-gluon plasma (QGP) followed by statistical generation of J/$psi$ mesons at the phase boundary.
We discuss the properties of fluctuations of the electric charge in the vicinity of the chiral crossover transition within effective chiral models at finite temperature and vanishing net baryon density. The calculation includes non-perturbative dynam ics implemented within the functional renormalization group approach. We study the temperature dependence of the electric charge susceptibilities in the linear sigma model and explore the role of quantum statistics. Within the Polyakov loop extended quark-meson model, we study the influence of the coupling of quarks to mesons and to an effective gluon field on charge fluctuations. We find a clear signal for the chiral crossover transition in the fluctuations of the electric charge. Accordingly, we stress the role of higher order cumulants as probes of criticality related to the restoration of chiral symmetry and deconfinement.
136 - B. Friman , F. Karsch , K. Redlich 2011
We discuss the relevance of higher order moments of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic stru cture of these higher moments at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order moments of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second to fourth order moments of the net proton number fluctuations at RHIC. We point out that the sixth order moments of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the thermal freeze-out to the crossover line.
59 - K. Redlich , B. Friman , 2010
We discuss the influence of fluctuations on thermodynamics near the chiral phase transition within Polyakov loop extended quark--meson model based on the functional renormalization group (FRG) method. We include the gluon fields in the FRG flow equat ion self-consistently on the mean-field level. We focus on the properties of the phase diagram and net-baryon number fluctuations.
The statistical model assuming chemical equilibriumand local strangeness conservation describes most of the observed features of strange particle production from SIS up to RHIC. Deviations are found as the maximum in the measured K+/pi+ ratio is much sharper than in the model calculations. At the incident energy of the maximum, the statistical model shows that freeze out changes regime from one being dominated by baryons at the lower energies toward one being dominated by mesons. It will be shown how deviations from the usual freeze-out curve influence the various particle ratios. Furthermore, other observables exhibit also changes just in this energy regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا