ترغب بنشر مسار تعليمي؟ اضغط هنا

553 - A. Saini , K. Ranjan , N. Solyak 2012
Project-X is the proposed high intensity proton facility to be built at Fermilab, US. First stage of the Project-X consists of superconducting linac which will be operated in continuous wave (CW) mode to accelerate the beam from 2.5 MeV to 3 GeV. The operation at CW mode puts high tolerances on the beam line components, particularly on radiofrequency (RF) cavity. The failure of beam line elements at low energy is very critical as it results in mis-match of the beam with the following sections due to different beam parameters than designed parameter. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it could affect the reliability of the machine and may lead to the shutdown of the Linac to replace the failed elements. Thus, it is important to study these effects and their compensation to get smooth beam propagation in linac. This paper describes the results of study performed for the failure of RF cavity & solenoid in SSR0 section.
220 - A. Saini , K. Ranjan , N. Solyak 2012
Project-X is the proposed high intensity proton facility to be built at Fermilab, US. Its Superconducting Linac, to be used at first stage of acceleration, will be operated in continuous wave (CW) mode. The Linac is divided into three sections on the basis of operating frequencies & six sections on the basis of family of RF cavities to be used for the acceleration of beam from 2.5 MeV to 3 GeV. The transition from one section to another can limit the acceptance of the Linac if these are not matched properly. We performed a study to calculate the acceptance of the Linac in both longitudinal and transverse plane. Investigation of most sensitive area which limits longitudinal acceptance and study of influence of failure of beam line elements at critical position, on acceptance are also performed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا