ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - F. Fuerst 2015
We present spectral analysis of NuSTAR and Swift observations of Cep X-4 during its outburst in 2014. We observed the source once during the peak of the outburst and once during the decay, finding good agreement in the spectral shape between the obse rvations. We describe the continuum using a powerlaw with a Fermi-Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron resonant scattering feature (CRSF) around 30 keV. A simple absorption-like line with a Gaussian optical depth or a pseudo-Lorentzian profile both fail to describe the shape of the CRSF accurately, leaving significant deviations at the red side of the line. We characterize this asymmetry with a second absorption feature around 19 keV. The line energy of the CRSF, which is not influenced by the addition of this feature, shows a small but significant positive luminosity dependence. With luminosities between (1-6)e36 erg/s, Cep X-4 is below the theoretical limit where such a correlation is expected. This behavior is similar to Vela X-1 and we discuss parallels between the two systems.
The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in August 2009. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual by presenting a double-peaked light curve. The two peaks reached a flux of ~450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.
We present an analysis of the neutron star High Mass X-ray Binary (HMXB) 4U 1909+07 mainly based on Suzaku data. We extend the pulse period evolution, which behaves in a random-walk like manner, indicative of direct wind accretion. Studying the spect ral properties of 4U 1909+07 between 0.5 to 90 keV we find that a power-law with an exponential cutoff can describe the data well, when additionally allowing for a blackbody or a partially covering absorber at low energies. We find no evidence for a cyclotron resonant scattering feature (CRSF), a feature seen in many other neutron star HMXBs sources. By performing pulse phase resolved spectroscopy we investigate the origin of the strong energy dependence of the pulse profile, which evolves from a broad two-peak profile at low energies to a profile with a single, narrow peak at energies above 20 keV. Our data show that it is very likely that a higher folding energy in the high energy peak is responsible for this behavior. This in turn leads to the assumption that we observe the two magnetic poles and their respective accretion columns at different phases, and that these accretions column have slightly different physical conditions.
Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keV. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient 1A 1118-61 and pulse phase resolved spectroscopy of GX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-1, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.
66 - I. Caballero 2010
A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occured around the periastron passage of the source, but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first flare (lasting about 9 days from MJD 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab, and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL, RXTE and Suzaku. First results of these observations are presented, with special emphasis on the cyclotron lines present in the X-ray spectrum of the source, as well as in the pulse period and energy dependent pulse profiles of the source.
We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory. The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at ~19 keV. Additionally, using the narrow CCD response of Suzaku near 6 keV allows us to study in detail the Fe K bandpass and to quantify the Fe K beta line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of NH ~2e22 /cm^2, consistent with a wind accreting geometry, and a high Fe abundance (~3-4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا