ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphology, structure and magnetic properties of nanocomposites of magnetite (Fe3O4) nanoparticles and alginic acid (AA) are studied. Magnetite Fe3O4 nanoparticles and the nanoparticles capped with alginic acid exhibit very distinct properties. The c hemical bonding between alginic acid and surface of magnetite nanoparticles results in recovery of surface magnetization. On the other hand, it also leads to enhanced surface spin disorder and unconventional behavior of magnetization observed in Fe3O4-AA nanocomposites at low temperatures.
The process of magnetic relaxation was studied in bismuth ferrite BiFeO3 multiferroic micro-cubes obtained by means of microwave assisted Pechini process. Two different mechanisms of relaxation were found. The first one is a rapid magnetic relaxation driven by the domain reorientations and/or pinning and motion of domain walls. This mechanism is also responsible for the irreversible properties at low temperatures. The power-law decay of the magnetic moment confirms that this relaxation takes place in the system of weakly interacting ferromagnetic or superferromagnetic domains. The second mechanism is a longterm weak magnetic relaxation due to spin glass-phase.
In this report we present results of magnetization measurements and investigation of aging and memory effect in bismuth ferrite multiferroic micro-cubes obtained by means of simple microwave synthesis procedure. It is found that difference between FC and ZFC magnetizations appears at the temperature of freezing of ferromagnetic domain walls. The decay of the magnetic moment vs. time described by power-law relation and the absence of memory effect indicate domain growth mechanism rather than the spin-glass phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا