ترغب بنشر مسار تعليمي؟ اضغط هنا

We performed angle dependent magnetoresistance study of a metallic single crystal sample of Bi2Te3. We find that the magnetoresistance is highly asymmetric in positive and negative magnetic fields for small angles between the magnetic field and the d irection perpendicular to the plane of the sample. The magnetoresistance becomes symmetric as the angle approaches 90 degree. The quantum Shubnikov de-Haas oscillations are symmetric and show signatures of topological surface states with Dirac dispersion in the form of non-zero Berry phase. However, the angular dependence of these oscillations suggests a complex three dimensional Fermi surface as the source of these oscillations, which does not exactly conform with the six ellipsoidal model of the Fermi surface of Bi2Te3. We attribute the asymmetry in the magnetoresistance to a mixing of the Hall voltage in the longitudinal resistance due to the comparable magnitude of the Hall and longitudinal resistance in our samples. This provides a clue to understanding the asymmetric magnetoresistance often seen in this and similar materials. Moreover, the asymmetric nature evolves with exposure to atmosphere and thermal cycling, which we believe is either due to exposure to atmosphere or thermal cycling, or both affecting the carrier concentration and hence the Hall signal in these samples. However, the quantum oscillations seem to be robust against these factors which suggests that the two have different origins.
First-order phase transition in a highly correlated electron system can manifest as a dynamic phenomenon. The presence of multiple domains of the coexisting phases average out the dynamical effects making it nearly impossible to predict the exact nat ure of phase transition dynamics. Here we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from supercooled metallic to insulating state is a stochastic process that happens at different temperature and time in different experimental runs. The experimental results are understood without incorporating material specific properties suggesting their universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching is expected to depend on the parameters such as quenched disorder, strain, magnetic field etc.
227 - Sourabh Barua , K. P. Rajeev , 2014
Bi2Te3 is a member of a new class of materials known as topological insulators which are supposed to be insulating in the bulk and conducting on the surface. However experimental verification of the surface states has been difficult in electrical tra nsport measurements due to a conducting bulk. We report low temperature magnetotransport measurements on single crystal samples of Bi2Te3. We observe metallic character in our samples and large and linear magnetoresistance from 1.5 K to 290 K with prominent Shubnikov-de Haas (SdH) oscillations whose traces persist upto 20 K. Even though our samples are metallic we are able to obtain a Berry phase close to the value of {pi} expected for Dirac fermions of the topological surface states. This indicates that we might have obtained evidence for the topological surface states in metallic single crystals of Bi2Te3. Other physical quantities obtained from the analysis of the SdH oscillations are also in close agreement with those reported for the topological surface states. The linear magnetoresistance observed in our sample, which is considered as a signature of the Dirac fermions of the surface states, lends further credence to the existence of topological surface states.
105 - Sourabh Barua , , K. P. Rajeev 2013
In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of t hese materials since they have an insulating bulk and conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a narrow range of thickness.
We report detailed magnetization measurements on the perovskite oxide NdNiO$_3$. This system has a first order metal-insulator (M-I) transition at about 200 K which is associated with charge ordering. There is also a concurrent paramagnetic to antife rromagnetic spin ordering transition in the system. We show that the antiferromagnetic state of the nickel sublattice is spin canted. We also show that the concurrency of the charge ordering and spin ordering transitions is seen only while warming up the system from low temperature. The transitions are not concurrent while cooling the system through the M-I transition temperature. This is explained based on the fact that the charge ordering transition is first order while the spin ordering transition is continuous. In the magnetically ordered state the system exhibits ZFC-FC irreversibilities, as well as history-dependent magnetization and aging. Our analysis rules out the possibility of spin-glass or superparamagnetism and suggests that the irreversibilities originate from magnetocrystalline anisotropy and domain wall pinning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا