ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - C. Aubin , K. Orginos 2010
We discuss a new approach to reducing excited state contributions from two- and three-point correlation functions in lattice simulations. For the purposes of this talk, we focus on the Delta(1232) resonance and discuss how this new method reduces exc ited state contamination from two-point functions and mention how this will be applied to three-point functions to extract hadronic form factors.
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and intera ctions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
We calculate the magnetic dipole moment of the Delta(1232) and Omega^- baryons with 2+1-flavors of clover fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation of these magnetic moments using a ba ckground field technique. The calculation for Omega^- is done at the physical strange quark mass, with the result in units of the physical nuclear magneton mu_Omega^-= -1.93(8)(12) (where the first error is statistical and the second is systematic) compared to the experimental number: -2.02(5). The Delta has been studied at three unphysical quark masses, corresponding to pion mass m_pi = 366, 438, and 548 MeV. The pion mass dependence is compared with the behavior obtained from chiral effective field theory.
We calculate the magnetic dipole moment of the Delta baryon using a background magnetic field on 2+1-flavors of clover fermions on anisotropic lattices. We focus on the finite volume effects that can be significant in background field studies, and th us we use two different spatial volumes in addition to several quark masses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا