ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. It was established that due to Ag addition the hexagonal phase formation in melted FeSe0.94 samples is suppresse d and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp (with a transition width below 1 K), Tc and the upper critical field were found to increase, whereas the normal state resistivity significantly reduces becoming comparable with those of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by thermally activated flux flow. From the activation energy U vs H dependence, a crossover from single-vortex pinning to a collective creep pinning behavior was found with increasing the magnetic field.
I-V characteristics of polycrystalline Y(1-x)CaxBa2Cu3O(7-{delta}) samples (x=0.025 and 0.20) have been measured at different temperatures and magnetic fields in the range 0.1 T-6.9 T. The scaling behavior has been established for both samples at all magnetic fields. The dynamic exponent z displays some morphology dependence with higher value for small grain size sample Y0.8Ca0.2Ba2Cu3O(7-{delta}). The static exponent { u} has been determined from {rho} vs. T dependence at given magnetic field. The critical exponents are field independent with one only exception ({ u} - for Y0.975Ca0.025Ba2Cu3O(7-{delta}) sample). This is connected with the special interrelation between the vortex correlation length, {xi}, and intervortex spacing {alpha} ({xi} leq {alpha}) at all magnetic fields above Tg for this sample and its better pinning.
Electrical transport and specific heat properties of Nd_{1-x}Pb_{x}MnO_{3} single crystals for 0.15 < x 0.5 have been studied in low temperature regime. The resistivity in the ferromagnetic insulating (FMI) phase for x < 0.3 has an activated characte r. The dependence of the activation gap Delta on doping x has been determined and the critical concentration for the zero-temperature metal-insulator transition was determined as x_{c} ~ 0.33. For a metallic sample with x=0.42, a conventional electron-electron (e-e) scattering term proportional T^{2} is found in the low-temperature electrical resistivity, although the Kadowaki-Woods ratio is found to be much larger for this manganite than for a normal metal. For a metallic sample with x=0.5, a resistivity minimum is observed for x= 0.5. The effect is attributed to weak localization and can be described by a negative T^{1/2} weak-localization contribution to resistivity for a disordered three-dimensional electron system. The specific heat data have been fitted to contributions from free electrons (gamma), spin excitations (beta_{3/2}), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. The value of gamma is larger than for normal metals, which is ascribed to magnetic ordering effects involving Nd. Also, the Schottky-like anomaly appears broadened and weakened suggesting inhomogeneous molecular fields at the Nd-sites.
We report on the observation of a strain-induced insulator state in ferromagnetic La_0.7Sr_0.3CoO_3 films. Tensile strain above 1% is found to enhance the resistivity by several orders of magnitude. Reversible strain of 0.15% applied using a piezoele ctric substrate triggers huge resistance modulations, including a change by a factor of 10 in the paramagnetic regime at 300 K. However, below the ferromagnetic ordering temperature, the magnetization data indicate weak dependence on strain for the spin state of the Co ions. We interpret the changes observed in the transport properties in terms of a strain-induced splitting of the Co e_g levels and reduced double exchange, combined with a percolation-type conduction in an electronic cluster state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا