ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - T. Takahashi 2014
ASTRO-H White Papers are meant to provide useful information to scientists who plan observations from the satellite. This short paper introduces the 16 ASTRO-H White Papers in addition to general description of the satellite and its new features.
The results from Suzaku observations of the central region of the Perseus cluster are presented. Deep exposures with the X-ray Imaging Spectrometer provide high quality X-ray spectra from the intracluster medium. X-ray lines from helium-like Cr and M n have been detected significantly for the first time in clusters. In addition, elemental abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni are accurately measured within 10 (or 220 kpc) from the cluster center. The relative abundance ratios are found to be within a range of 0.8-1.5 times the solar value. These abundance ratios are compared with previous measurements, those in extremely metal-poor stars in the Galaxy, and theoretical models.
Although about 40% of the soft X-ray background emission in 0.4 to 1 keV range has extragalactic origins and thus is totally blocked by the Galactic absorption in midplane directions, it decreases at most by about 20 % in midplane. Suzaku observation of the direction, (l, b) = (235, 0), showed an OVII Kalpha emission intensity comparable with that of the MBM-12 on cloud Suzaku observation, but revealed a narrow bump peaked at ~ 0.9 keV. The latter component is partly filling the decrease of the extragalactic component in midplane. The feature can be well represented by a thin thermal emission with a temperature of about 0.8 keV. Because of the high pressure implied for spatially extended hot gas, the emission is likely a sum of unresolved faint sources. We consider a large fraction of the emission originates from faint dM stars. We constructed a model spectrum for spatially unresolved dM stars that consistently explains the observed spectrum and the surface brightness. The model also suggests that the emission from dM stars decreases very rapidly with increasing b, and thus that it cannot compensate entirely the decrease of the extragalactic component at b ~ 2 - 10 deg.
The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide band X-ray spectroscopy (3 - 80 keV ) provided by multi-layer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. With these instruments, NeXT covers very wide energy range from 0.3 keV to 600 keV. The micro-calorimeter system will be developed by international collaboration lead by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~ 7 eV by the micro-calorimeter will enable a wide variety of important science themes to be pursued.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا