ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze a single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable $x$, for each passage of a particle through the interferometer. Quantum theory predicts an interference pattern that is independent of the sequence of the values of $x$. On the other hand, corpuscular models that reproduce the results of quantum optics experiments carried out up to this date show a reduced visibility and a shift of the interference pattern depending on the details of the sequence of the values of $x$. The proposed experiment will show that: (1) it can be described by quantum theory, and thus not by the current corpuscular models, or (2) it cannot be described by quantum theory but can be described by the corpuscular models or variations thereof, or (3) it can neither be described by quantum theory nor by corpuscular models. Therefore, the proposed experiment can be used to determine to what extent quantum theory provides a description of observed events beyond the usual statistical level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا