ترغب بنشر مسار تعليمي؟ اضغط هنا

Ballistic neutron guides are efficient for neutron transport over long distances, and in particular elliptically shaped guides have received much attention lately. However, elliptic neutron guides generally deliver an inhomogeneous divergence distrib ution when used with a small source, and do not allow kinks or curvature to avoid a direct view from source to sample. In this article, a kinked double-elliptic solution is found for neutron transport to a small sample from a small (virtual) source, as given e.g. for instruments using a pinhole beam extraction with a focusing feeder. A guide consisting of two elliptical parts connected by a linear kinked section is shown by VITESS simulations to deliver a high brilliance transfer as well as a homogeneous divergence distribution while avoiding direct line of sight to the source. It performs better than a recently proposed ellipse-parabola hybrid when used in a ballistic context with a kinked or curved central part. Another recently proposed solution, an analytically determined non-linear focusing guide shape, is applied here for the first time in a kinked and curved ballistic context. The latter is shown to yield comparable results for long wavelength neutrons as the guide design found here, with a larger inhomogeneity in the divergence but higher transmission of thermal neutrons. It needs however a larger (virtual) source and might be more difficult to build in a real instrument.
Bi-spectral beam extraction combines neutrons from two different kind of moderators into one beamline, expanding the spectral range and thereby the utilization of an instrument. This idea can be realized by a mirror that reflects long wavelength neut rons from an off-axis colder moderator into a neutron guide aligned with another moderator emitting neutrons with shorter wavelengths which will be transmitted through the mirror. The mirror used in such systems is typically several meters long, which is a severe disadvantage because it reduces the possible length of a focusing device in design concepts requiring a narrow beam at a short distance from the source, as used in many instruments under development for the planned European Spallation Source (ESS). We propose a shortened extraction system consisting of several mirrors, and show that such an extraction system is better suited for combination with a feeder in an eye of the needle design, illustrated here in the context of a possible ESS imaging beamline.
The concept of Wavelength Frame Multiplication (WFM) was developed to extend the usable wavelength range on long pulse neutron sources for instruments using pulse shaping choppers. For some instruments, it is combined with a pulse shaping double chop per, which defines a constant wavelength resolution, and a set of frame overlap choppers that prevent spurious neutrons from reaching the detector thus avoiding systematic errors in the calculation of wavelength from time of flight. Due to its complexity, the design of such a system is challenging and there are several criteria that need to be accounted for. In this work, the design of the WFM chopper system for the potential future liquids reflectometer at the European Spallation Source (ESS) is presented, which makes use of acceptance diagrams. They prove to be a powerful tool for understanding the work principle of the system and recognizing potential problems. The authors assume that the presented study can be useful for design or upgrade of further instruments, in particular the ones planned for the ESS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا