ترغب بنشر مسار تعليمي؟ اضغط هنا

During the 2010 rainy season in Yangbajing (4300 m above sea level) in Tibet, China, a long-duration count enhancement associated with thunderclouds was detected by a solar neutron telescope and neutron monitors installed at the Yangbajing Comic Ray Observatory. The event, lasting for $sim$40 min, was observed on July 22, 2010. The solar neutron telescope detected significant $gamma$-ray signals with energies $>$40 MeV in the event. Such a prolonged high-energy event has never been observed in association with thunderclouds, clearly suggesting that electron acceleration lasts for 40 min in thunderclouds. In addition, Monte Carlo simulations showed that $>$10-MeV $gamma$ rays largely contribute to the neutron monitor signals, while $>$1-keV neutrons produced via a photonuclear reaction contribute relatively less to the signals. This result suggests that enhancements of neutron monitors during thunderstorms are not necessarily a clear evidence for neutron production, as previously thought.
108 - T.K. Sako , K. Kawata , M. Ohnishi 2009
Aiming to observe cosmic gamma rays in the 10 - 1000 TeV energy region, we propose a 10000 m^2 underground water-Cherenkov muon-detector (MD) array that operates in conjunction with the Tibet air-shower (AS) array. Significant improvement is expected in the sensitivity of the Tibet AS array towards celestial gamma-ray signals above 10 TeV by utilizing the fact that gamma-ray-induced air showers contain far fewer muons compared with cosmic-ray-induced ones. We carried out detailed Monte Carlo simulations to assess the attainable sensitivity of the Tibet AS+MD array towards celestial TeV gamma-ray signals. Based on the simulation results, the Tibet AS+MD array will be able to reject 99.99% of background events at 100 TeV, with 83% of gamma-ray events remaining. The sensitivity of the Tibet AS+MD array will be ~20 times better than that of the present Tibet AS array around 20 - 100 TeV. The Tibet AS+MD array will measure the directions of the celestial TeV gamma-ray sources and the cutoffs of their energy spectra. Furthermore, the Tibet AS+MD array, along with imaging atmospheric Cherenkov telescopes as well as the Fermi Gamma-ray Space Telescope and X-ray satellites such as Suzaku and MAXI, will make multiwavelength observations and conduct morphological studies on sources in the quest for evidence of the hadronic nature of the cosmic-ray acceleration mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا