ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracold neutrons (UCNs) were produced in a 4 liter volume of superfluid helium using the PF1B cold neutron beam facility at the Institut Laue-Langevin and then extracted to a detector at room temperature. With a converter temperature of 1.08 K the number of accumulated UCNs was counted to be $91,!700 pm 300$. From this, we derive a volumetric UCN production rate of $(6.9 pm 1.7),mathrm{cm^{-3},s^{-1}}$, which includes a correction for losses in the converter during UCN extraction caused by a short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs due to excitations in the superfluid was studied by scanning the temperature between 1.2-2.4 K. Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data in the analysis, the only UCN up-scattering process found to be present was from two-phonon scattering. Our analysis rules out contributions from the other scattering processes to $lesssim 10%$ of their predicted levels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا