ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19 years of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final IPN localization of this e vent and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderare $E_{peak}$ of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a huge isotropic-equivalent energy release $E_{iso}=(2.1pm0.1)times10^{54}$ erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity $L_{iso}=(4.7pm0.2)times10^{54}$erg s$^{-1}$. A tail of the soft gamma-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and ISM-like circumburst environment implied. We conclude that, among multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of $zsim7.5$ for Konus-WIND, and $zsim12$ for Swift/BAT, which stresses the importance of GRBs as probes of the early Universe.
We present observations of the extremely long GRB 080704 obtained with the instruments of the Interplanetary Network (IPN). The observations reveal two distinct emission episodes, separated by a ~1500 s long period of quiescence. The total burst dura tion is about 2100 s. We compare the temporal and spectral characteristics of this burst with those obtained for other ultra-long GRBs and discuss these characteristics in the context of different models.
Between the launch of the textit{GGS Wind} spacecraft in 1994 November and the end of 2010, the Konus-textit{Wind} experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emis sion). During this period, the IPN consisted of up to eleven spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, $sim$18 per year, exceeds that of many individual experiments.
We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrume nt in the 9-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.4 and 32 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1 sigma GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 degree systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of 3, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3 sigma error radius. The IPN 3 sigma error boxes have areas between about 1 square arcminute and 110 square degrees, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration of the IPN.
In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations le ads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.
Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecra ft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events.
We are integrating the Fermi Gamma-Ray Burst Monitor (GBM) into the Interplanetary Network (IPN) of Gamma-Ray Burst (GRB) detectors. With the GBM, the IPN will comprise 9 experiments. This will 1) assist the Fermi team in understanding and reducing t heir systematic localization uncertainties, 2) reduce the sizes of the GBM and Large Area Telescope (LAT) error circles by 1 to 4 orders of magnitude, 3) facilitate the identification of GRB sources with objects found by ground- and space-based observatories at other wavelengths, from the radio to very high energy gamma-rays, 4) reduce the uncertainties in associating some LAT detections of high energy photons with GBM bursts, and 5) facilitate searches for non-electromagnetic GRB counterparts, particularly neutrinos and gravitational radiation. We present examples and demonstrate the synergy between Fermi and the IPN. This is a Fermi Cycle 2 Guest Investigator project.
Between 2000 November and 2006 May, one or more spacecraft of the interplanetary network (IPN) detected 226 cosmic gamma-ray bursts that were also detected by the FREGATE experiment aboard the HETE-II spacecraft. During this period, the IPN consisted of up to nine spacecraft, and using triangulation, the localizations of 157 bursts were obtained. We present the IPN localization data on these events.
GRB 051103 is considered to be a candidate soft gamma repeater (SGR) extragalactic giant magnetar flare by virtue of its proximity on the sky to M81/M82, as well as its time history, localization, and energy spectrum. We have derived a refined interp lanetary network localization for this burst which reduces the size of the error box by over a factor of two. We examine its time history for evidence of a periodic component, which would be one signature of an SGR giant flare, and conclude that this component is neither detected nor detectable under reasonable assumptions. We analyze the time-resolved energy spectra of this event with improved time- and energy resolution, and conclude that although the spectrum is very hard, its temporal evolution at late times cannot be determined, which further complicates the giant flare association. We also present new optical observations reaching limiting magnitudes of R > 24.5, about 4 magnitudes deeper than previously reported. In tandem with serendipitous observations of M81 taken immediately before and one month after the burst, these place strong constraints on any rapidly variable sources in the region of the refined error ellipse proximate to M81. We do not find any convincing afterglow candidates from either background galaxies or sources in M81, although within the refined error region we do locate two UV bright star forming regions which may host SGRs. A supernova remnant (SNR) within the error ellipse could provide further support for an SGR giant flare association, but we were unable to identify any SNR within the error ellipse. These data still do not allow strong constraints on the nature of the GRB 051103 progenitor, and suggest that candidate extragalactic SGR giant flares will be difficult, although not impossible, to confirm.
Magnetars persistent emission above 10 keV was recently discovered thanks to the imaging capabilities of the IBIS coded mask telescope on board the INTEGRAL satellite. The only two sources that show some degree of long term variability are SGR 1806-2 0 and 1RXS J170849.0-400910. We find some indications that variability of these hard tails could be the driver of the spectral variability measured in these sources below 10 keV. In addition we report for the first time the detection at 2.8 sigma level of pulsations in the hard X-ray tail of SGR 1806-20.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا