ترغب بنشر مسار تعليمي؟ اضغط هنا

441 - J. E. Geach 2012
The first deep blank-field 450um map (1-sigma~1.3mJy) from the SCUBA-2 Cosmology Legacy Survey (S2CLS), conducted with the James Clerk Maxwell Telescope (JCMT) is presented. Our map covers 140 arcmin^2 of the COSMOS field, in the footprint of the HST CANDELS area. Using 60 submillimetre galaxies (SMGs) detected at >3.75-sigma, we evaluate the number counts of 450um-selected galaxies with flux densities S_450>5mJy. The 8-arcsec JCMT beam and high sensitivity of SCUBA-2 now make it possible to directly resolve a larger fraction of the cosmic infrared background (CIB, peaking at ~200um) into the individual galaxies responsible for its emission than has previously been possible at this wavelength. At S_450>5mJy we resolve (7.4[+/-]0.7)x10^-2 MJy/sr of the CIB at 450um (equivalent to 16[+/-]7% of the absolute brightness measured by COBE at this wavelength) into point sources. A further ~40% of the CIB can be recovered through a statistical stack of 24um emitters in this field, indicating that the majority (~60%) of the CIB at 450um is emitted by galaxies with S_450>2mJy. The average redshift of 450um emitters identified with an optical/near-infrared counterpart is estimated to be <z>=1.3, implying that the galaxies in the sample are in the ultraluminous class (L_IR~1.1x10^12 L_sun). If the galaxies contributing to the statistical stack lie at similar redshifts, then the majority of the CIB at 450um is emitted by galaxies in the LIRG class with L_IR>3.6x10^11 L_sun.
77 - J. L. Wardlow 2010
[abridged] We derive photometric redshifts from 17-band optical to mid-IR photometry of 74 robust counterparts to 68 of the 126 submillimetre galaxies (SMGs) selected at 870um by LABOCA observations in the ECDFS. The median photometric redshift of id entified SMGs is z=2.2pm0.1, the interquartile range is z=1.8-2.7 and we identify 10 (~15%) high-redshift (z>3) SMGs. We derive a simple redshift estimator for SMGs based on the 3.6 and 8um fluxes, which is accurate to Delta_z~0.4 for SMGs at z<4. A statistical analysis of sources around unidentified SMGs identifies a population of likely counterparts with a redshift distribution peaking at z=2.5pm0.3, which likely comprises ~60% of the unidentified SMGs. This confirms that the bulk of the undetected SMGs are coeval with those detected in the radio/mid-IR. We conclude that ~15% of all the SMGs are below the flux limits of our survey and lie at z>3 and hence ~30% of all SMGs have z>3. We estimate that the full S_870um>4mJy SMG population has a median redshift of 2.5pm0.6. In contrast to previous suggestions we find no significant correlation between S_870um and redshift. The median stellar mass of the SMGs derived from SED fitting is (9.2pm0.9)x10^10Msun and the interquartile range is (4.7-14)x10^10Msun, although we caution that uncertainty in the star-formation histories results in a factor of ~5 uncertainty in these stellar masses. The median characteristic dust temperature of SMGs is 35.9pm1.4K and the interquartile range is 28.5-43.3K. The infrared luminosity function shows that SMGs at z=2-3 typically have higher far-IR luminosities and luminosity density than those at z=1-2. This is mirrored in the evolution of the star-formation rate density (SFRD) for SMGs which peaks at z~2. The maximum contribution of bright SMGs to the global SFRD (~5% for SMGs with S_870um>4mJy; ~50% for SMGs with S_870um>1mJy) also occurs at z~2.
81 - K. Coppin 2010
Spitzer spectroscopy has revealed that ~80% of submm galaxies (SMGs) are starburst (SB) dominated in the mid-infrared. Here we focus on the remaining ~20% that show signs of harboring powerful active galactic nuclei (AGN). We have obtained Spitzer-IR S spectroscopy of a sample of eight SMGs which are candidates for harboring powerful AGN on the basis of IRAC color-selection (S8/S4.5>2; i.e. likely power-law mid-infrared SEDs). SMGs with an AGN dominating (>50%) their mid-infrared emission could represent `missing link sources in an evolutionary sequence involving a major merger. First of all, we detect PAH features in all of the SMGs, indicating redshifts from 2.5-3.4, demonstrating the power of the mid-infrared to determine redshifts for these optically faint dusty galaxies. Secondly, we see signs of both star-formation (from the PAH features) and AGN activity (from continuum emission) in our sample: 62% of the sample are AGN-dominated in the mid-infrared with a median AGN content of 56%, compared with <30% on average for typical SMGs, revealing that our IRAC color selection has successfully singled out sources with proportionately more AGN emission than typical SB-dominated SMGs. However, we find that only about 10% of these AGN dominate the bolometric emission of the SMG when the results are extrapolated to longer infrared wavelengths, implying that AGN are not a significant power source to the SMG population overall, even when there is evidence in the mid-infrared for substantial AGN activity. When existing samples of mid-infrared AGN-dominated SMGs are considered, we find that S8/S4.5>1.65 works well at selecting mid-infrared energetically dominant AGN in SMGs, implying a duty cycle of ~15% if all SMGs go through a subsequent mid-infrared AGN-dominated phase in the proposed evolutionary sequence.
453 - A. Weiss , A. Kovacs , K. Coppin 2009
We present a sensitive 870 micron survey of the Extended Chandra Deep Field South (ECDFS) using LABOCA on the APEX telescope. The LABOCA ECDFS Submillimetre Survey (LESS) covers the full 30 x 30 field size of the ECDFS and has a uniform noise level o f 1.2 mJy/beam. LESS is thus the largest contiguous deep submillimetre survey undertaken to date. The noise properties of our map show clear evidence that we are beginning to be affected by confusion noise. We present a catalog of 126 SMGs detected with a significance level above 3.7 sigma. The ECDFS exhibits a deficit of bright SMGs relative to previously studied blank fields but not of normal star-forming galaxies that dominate the extragalactic background light (EBL). This is in line with the underdensities observed for optically defined high redshift source populations in the ECDFS (BzKs, DRGs,optically bright AGN and massive K-band selected galaxies). The differential source counts in the full field are well described by a power law with a slope of alpha=-3.2, comparable to the results from other fields. We show that the shape of the source counts is not uniform across the field. The integrated 870 micron flux densities of our source-count models account for >65% of the estimated EBL from COBE measurements. We have investigated the clustering of SMGs in the ECDFS by means of a two-point correlation function and find evidence for strong clustering on angular scales <1. Assuming a power law dependence for the correlation function and a typical redshift distribution for the SMGs we derive a spatial correlation length of r_0=13+/-6 h^-1 Mpc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا