ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The study of abundances in the nucleus of active galaxies allows us to investigate the evolution of abundance by comparing local and higher redshift galaxies. However, the methods used so far have substantial drawbacks or rather large uncert ainties. Some of the measurements are at odds with the initial mass function derived from the older stellar population of local elliptical galaxies. Aims. We determine accurate and reliable abundances of C, N, Ne, and Fe relative to O from the narrow absorption lines observed in the X-ray spectra of Mrk 509. Methods. We use the stacked 600 ks XMM-Newton RGS and 180 ks Chandra LETGS spectra. Thanks to simultaneous observations with INTEGRAL and the optical monitor on-board XMM-Newton for the RGS observations and HST-COS and Swift for the LETGS observations, we have an individual spectral energy distribution for each dataset. Owing to the excellent quality of the RGS spectrum, the ionisation structure of the absorbing gas is well constrained, allowing for a reliable abundance determination using ions over the whole observed range of ionisation parameters. Results. We find that the relative abundances are consistent with the proto-solar abundance ratios: C/O = 1.19$pm$0.08, N/O = 0.98$pm$0.08, Ne/O = 1.11$pm$0.10, Mg/O = 0.68$pm$0.16, Si/O = 1.3$pm$0.6, Ca/O = 0.89$pm$0.25, and Fe/O = 0.85$pm$0.06, with the exception of S, which is slightly under-abundant, S/O = 0.57$pm$0.14. Our results, and their implications, are discussed and compared to the results obtained using other techniques to derive abundances in galaxies.
We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra ACIS-I image. We show that the excess low frequency emission in the the lobe further from Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to Earth as expected from light travel-time effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.
We present a 200 ks Chandra ACIS-I image of Cygnus A, and discuss a long linear feature seen in its counterlobe. This feature has a non-thermal spectrum and lies on the line connecting the brighter hotspot on the approaching side and the nucleus. We therefore conclude that this feature is (or was) a jet. However, the outer part of this X-ray jet does not trace the current counterjet observed in radio. No X-ray counterpart is observed on the jet side. Using light-travel time effects we conclude that this X-ray 50 kpc linear feature is a relic jet that contains enough low-energy plasma (gamma ~ 10^3) to inverse-Compton scatter cosmic microwave background photons, producing emission in the X-rays.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا