ترغب بنشر مسار تعليمي؟ اضغط هنا

During the WISE at 5: Legacy and Prospects conference in Pasadena, CA -- which ran from February 10 - 12, 2015 -- attendees were invited to engage in an interactive session exploring the future uses of the Wide-field Infrared Survey Explorer (WISE) d ata. The 65 participants -- many of whom are extensive users of the data -- brainstormed the top questions still to be answered by the mission, as well as the complementary current and future datasets and additional processing of WISE/NEOWISE data that would aid in addressing these most important scientific questions. The results were mainly bifurcated between topics related to extragalactic studies (e.g. AGN, QSOs) and substellar mass objects. In summary, participants found that complementing WISE/NEOWISE data with cross-correlated multiwavelength surveys (e.g. SDSS, Pan-STARRS, LSST, Gaia, Euclid, etc.) would be highly beneficial for all future mission goals. Moreover, developing or implementing machine-learning tools to comb through and understand cross-correlated data was often mentioned for future uses. Finally, attendees agreed that additional processing of the data such as co-adding WISE and NEOWISE and extracting a multi-epoch photometric database and parallax and proper motion catalog would greatly improve the scientific results of the most important projects identified. In that respect, a project such as MaxWISE which would execute the most important additional processing and extraction as well as make the data and catalogs easily accessible via a public portal was deemed extremely important.
73 - K. Alatalo 2014
NGC1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, p roviding a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at $dot{M}_{rm out} approx 110 M_odot$ yr$^{-1}$, of which the vast majority cannot escape the nucleus. Only 2 $M_odot$ yr$^{-1}$ is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact ($lesssim50$pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density ($Sigma_{rm SFR}$) to the gas surface density ($Sigma_{rm H_2}$) indicates that SF is suppressed by a factor of $approx 50$ compared to normal star-forming galaxies if all gas is forming stars, and $approx$150 for the outskirt (98%) dense molecular gas if the central region is is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-$sigma$ relation.
We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for{dag} Research in Millimeter Astronomy (CARMA) of the Hickson Compact Group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been prev iously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock and/or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L$_{rm FIR}$ and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of [C II]/CO and [C II]/FIR ratios, and its far-IR cooling supports a low density warm diffuse gas that falls close to the boundary of acceptable PDR models. However, the power radiated in the [C II] and warm H$_2$ emission have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock-heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed diffuse gas. The existence of shocks is also consistent with peculiar CO kinematics in the galaxy, indicating highly non-circular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced SF suppression may explain why a subset of these HCG galaxies have been found previously to fall in the mid-infrared green valley.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in n ormal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا