ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z=0.18), one of the most powerful gravitational lenses known. With 28 HST/ACS orbits in the F814W bandpass, we reach magnitude I_814=29 with > 90% completeness and sample the brightest ~5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N(GC_total) = 162,850 GCs within a projected radius of 400kpc. As many as half may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this is by far the largest GC system studied to date. The specific frequency S_N is high, but not uncommon for central galaxies in massive clusters, rising from S_N~5 near the center to ~12 at large radii. Passive galaxy fading would increase S_N by ~20% at z=0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M(GC_total)=3.9x10^10 Msun, is comparable to ~80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.
We study the globular cluster (GC) systems in three representative fossil group galaxies: the nearest (NGC6482), the prototype (NGC1132) and the most massive known to date (ESO306-017). This is the first systematic study of GC systems in fossil group s. Using data obtained with the Hubble Space Telescope Advanced Camera for Surveys in the F475W and F850LP filters, we determine the GC color and magnitude distributions, surface number density profiles, and specific frequencies. In all three systems, the GC color distribution is bimodal, the GCs are spatially more extended than the starlight, and the red population is more concentrated than the blue. The specific frequencies seem to scale with the optical luminosities of the central galaxy and span a range similar to that of the normal bright elliptical galaxies in rich environments. We also analyze the galaxy surface brightness distributions to look for deviations from the best-fit Sersic profiles; we find evidence of recent dynamical interaction in all three fossil group galaxies. Using X-ray data from the literature, we find that luminosity and metallicity appear to correlate with the number of GCs and their mean color, respectively. Interestingly, although NGC6482 has the lowest mass and luminosity in our sample, its GC system has the reddest mean color, and the surrounding X-ray gas has the highest metallicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا