ترغب بنشر مسار تعليمي؟ اضغط هنا

The non-local van der Waals density functional (vdW-DF) has had tremendous success since its inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However, while vdW-DF can describe bindin g energies and structures for van der Waals complexes and mixed systems with good accuracy, one long-standing criticism---also since its inception---has been that the $C_6$ coefficients that derive from the vdW-DF framework are largely inaccurate and can be wrong by more than a factor of two. It has long been thought that this failure to describe the $C_6$ coefficients is a conceptual flaw of the underlying plasmon framework used to derive vdW-DF. We prove here that this is not the case and that accurate $C_6$ coefficient can be obtained without sacrificing the accuracy at binding separations from a modified framework that is fully consistent with the constraints and design philosophy of the original vdW-DF formulation. Our design exploits a degree of freedom in the plasmon-dispersion model $omega_{mathbf{q}}$, modifying the strength of the long-range van der Waals interaction and the cross-over from long to short separations, with additional parameters tuned_ to reference systems. Testing the new formulation for a range of different systems, we not only confirm the greatly improved description of $C_6$ coefficients, but we also find excellent performance for molecular dimers and other systems. The importance of this development is not necessarily that particular aspects such as $C_6$ coefficients or binding energies are improved, but rather that our finding opens the door for further conceptual developments of an entirely unexplored direction within the exact same constrained-based non-local framework that made vdW-DF so successful in the first place.
111 - K. Berland , T.L. Einstein , 2009
Using a van der Waals density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)], we perform ab initio calculations for the adsorption energy of benzene (Bz) on Cu(111) as a function of lateral position and height. We find that the vdW-DF inclu sion of nonlocal correlations (responsible for dispersive interactions) changes the relative stability of eight binding-position options and increases the binding energy by over an order of magnitude, achieving good agreement with experiment. The admolecules can move almost freely along a honeycomb web of corridors passing between fcc and hcp hollow sites via bridge sites. Our diffusion barriers (for dilute and two condensed adsorbate phases) are consistent with experimental observations. Further vdW-DF calculations suggest that the more compact (hexagonal) Bz-overlayer phase, with lattice constant a = 6.74 AA, is due to direct Bz-Bz vdW attraction, which extends to ~8 AA. We attribute the second, sparser hexagonal Bz phase, with a = 10.24 AA, to indirect electronic interactions mediated by the metallic surface state on Cu(111). To support this claim, we use a formal Harris-functional approach to evaluate nonperturbationally the asymptotic form of this indirect interaction. Thus, we can account well for benzene self-organization on Cu(111).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا