ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b, from time series photometry with the ARC 3.5-m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336+/-0.042 percent and is centered at phase 0.5022 (+0.0023,-0.0027), consistent with a zero eccentricity orbit ecos{omega} = 0.0035 (+0.0036,-0.0042). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanets atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 micron secondary eclipse detections by Snellen et al. (2009), Gillon et al. (2009), and Alonso et al. (2009a). Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2454 (+84,-170) K, a very low Bond albedo A_B = 0.000 (+0.087,-0.000), and an energy redistribution parameter P_n = 0.1, indicating a small but nonzero amount of heat transfer from the day- to night-side. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity kappa_e =0.05cm^2g^-1, placed near the 0.1-bar atmospheric pressure level. This inversion layer is located ten times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا