ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we propose to formulate the task-oriented dialogue system as the purely natural language generation task, so as to fully leverage the large-scale pre-trained models like GPT-2 and simplify complicated delexicalization prepossessing. Ho wever, directly applying this method heavily suffers from the dialogue entity inconsistency caused by the removal of delexicalized tokens, as well as the catastrophic forgetting problem of the pre-trained model during fine-tuning, leading to unsatisfactory performance. To alleviate these problems, we design a novel GPT-Adapter-CopyNet network, which incorporates the lightweight adapter and CopyNet modules into GPT-2 to achieve better performance on transfer learning and dialogue entity generation. Experimental results conducted on the DSTC8 Track 1 benchmark and MultiWOZ dataset demonstrate that our proposed approach significantly outperforms baseline models with a remarkable performance on automatic and human evaluations.
kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN alg orithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.
Adversarial attacks have shown the vulnerability of machine learning models, however, it is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data. Most previous approaches conduct atta cks with the atomic textit{replacement} operation, which usually leads to fixed-length adversarial examples and therefore limits the exploration on the decision space. In this paper, we propose variable-length textual adversarial attacks~(VL-Attack) and integrate three atomic operations, namely textit{insertion}, textit{deletion} and textit{replacement}, into a unified framework, by introducing and manipulating a special textit{blank} token while attacking. In this way, our approach is able to more comprehensively find adversarial examples around the decision boundary and effectively conduct adversarial attacks. Specifically, our method drops the accuracy of IMDB classification by $96%$ with only editing $1.3%$ tokens while attacking a pre-trained BERT model. In addition, fine-tuning the victim model with generated adversarial samples can improve the robustness of the model without hurting the performance, especially for length-sensitive models. On the task of non-autoregressive machine translation, our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.
While large scale pre-trained language models such as BERT have achieved great success on various natural language understanding tasks, how to efficiently and effectively incorporate them into sequence-to-sequence models and the corresponding text ge neration tasks remains a non-trivial problem. In this paper, we propose to address this problem by taking two different BERT models as the encoder and decoder respectively, and fine-tuning them by introducing simple and lightweight adapter modules, which are inserted between BERT layers and tuned on the task-specific dataset. In this way, we obtain a flexible and efficient model which is able to jointly leverage the information contained in the source-side and target-side BERT models, while bypassing the catastrophic forgetting problem. Each component in the framework can be considered as a plug-in unit, making the framework flexible and task agnostic. Our framework is based on a parallel sequence decoding algorithm named Mask-Predict considering the bi-directional and conditional independent nature of BERT, and can be adapted to traditional autoregressive decoding easily. We conduct extensive experiments on neural machine translation tasks where the proposed method consistently outperforms autoregressive baselines while reducing the inference latency by half, and achieves $36.49$/$33.57$ BLEU scores on IWSLT14 German-English/WMT14 German-English translation. When adapted to autoregressive decoding, the proposed method achieves $30.60$/$43.56$ BLEU scores on WMT14 English-German/English-French translation, on par with the state-of-the-art baseline models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا