ترغب بنشر مسار تعليمي؟ اضغط هنا

94 - Junfang Sheng , Kaifu Luo 2012
We investigate the chain conformation of ring polymers confined to a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. We predict that the longitudinal size of a ring polymer scales with the chain length and the diameter of the channel in the same manner as that for linear chains based on scaling analysis and Flory-type theory. Moreover, Flory-type theory also gives the ratio of the longitudinal sizes for a ring polymer and a linear chain with identical chain length. These theoretical predictions are confirmed by numerical simulations. Finally, our simulation results show that this ratio first decreases and then saturates with increasing the chain stiffness, which has interpreted the discrepancy in experiments. Our results have biological significance.
99 - Junfang Sheng , Kaifu Luo 2011
We investigate the ejection dynamics of a ring polymer out of a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. The ejection dynamics for ring polymers shows two regimes like for linear pol ymers, depending on the relative length of the chain compared with the channel. For long chains with length $N$ larger than the critical chain length $N_{c}$, at which the chain just fully occupies the nanochannel, the ejection for ring polymers is faster compared with linear chains of identical length due to a larger entropic pulling force; while for short chains ($N<N_c$), it takes longer time for ring polymers to eject out of the channel due to a longer distance to be diffused to reach the exit of the channel before experiencing the entropic pulling force. These results can help understand many biological processes, such as bacterial chromosome segregation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا