ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an accurate and fast framework for generating mock catalogues including low-mass halos, based on an implementation of the COmoving Lagrangian Acceleration (COLA) technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale structure, but conventional N-body simulations are too computationally expensive for the production of thousands of realisations. We show that COLA simulations can produce accurate mock catalogues with a moderate computation resource for low- to intermediate- mass galaxies in $10^{12} M_odot$ haloes, both in real and redshift space. COLA simulations have accurate peculiar velocities, without systematic errors in the velocity power spectra for k < 0.15 h/Mpc, and with only 3-per-cent error for k < 0.2 h/Mpc. We use COLA with 10 time steps and a Halo Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly available at github.com/junkoda/cola_halo.
We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the over lap region of the two datasets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements $D_V r_s^{rm fid} / r_s = (1970 pm 47, 2132 pm 67, 2100 pm 200)$ Mpc from CMASS, the cross-correlation and WiggleZ, respectively. We use correlated mock realizations to calculate the covariance between the three BAO constraints. The distance scales derived from the two datasets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we use the cross-correlation function measurements to show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.
We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstructi on technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2<$z$<1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model independent distance measures $D_{mathrm V}(r_{mathrm s}^mathrm{fid}/r_{mathrm s})$ of 1716 $pm$ 83 Mpc, 2221 $pm$ 101 Mpc, 2516 $pm$ 86 Mpc (68% CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where $D_{mathrm V}$ is the volume-average-distance, and $r_{mathrm s}$ is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 percent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey.We provide the $D_{mathrm V}(r_{mathrm s}^mathrm{fid}/r_{mathrm s})$ posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of WMAP9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat LCDM model. Assuming this model we constrain the current expansion rate to $H_0$ = 67.15 $pm$ 0.98 kms$^{-1}$Mpc$^{-1}$. Allowing the equation of state of dark energy to vary we obtain $w_mathrm{DE}$ = -1.080 $pm$ 0.135. When assuming a curved LCDM model we obtain a curvature value of $Omega_{mathrm K}$ = -0.0043 $pm$ 0.0047.
We present some preliminary results from a series of extremely large, high-resolution N-body simulations of the formation of early nonlinear structures. We find that the high-z halo mass function is inconsistent with the Sheth-Tormen mass function, w hich tends to over-estimate the abundance of rare halos. This discrepancy is in rough agreement with previous results based on smaller simulations. We also show that the number density of minihaloes is correlated with local matter density, albeit with a significant scatter that increases with redshift, as minihaloes become increasingly rare. The average correlation is in rough agreement with a simple analytical extended Press-Schechter model, but can differ by up to factor of 2 in some regimes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا