ترغب بنشر مسار تعليمي؟ اضغط هنا

117 - Hanzhong Wu , Jun Ke , Panpan Wang 2021
In this work, we describe an updated version of single arm locking, and the noise amplification due to the nulls can be flexibly restricted with the help of optical frequency comb. We show that, the laser phase noise can be divided by a specific fact or with optical frequency comb as the bridge. The analytical results indicate that, the peaks in the science band have been greatly reduced. The performance of the noise suppression shows that the total noise after arm locking can well satisfy the requirement of time delay interferometry, even with the free-running laser source. We also estimate the frequency pulling characteristics of the updated single arm locking, and the results suggest that the pulling rate can be tolerated, without the risk of mode hopping. Arm locking will be a valuable solution for the noise reduction in the space-borne GW detectors. We demonstrate that, with the precise control of the returned laser phase noise, the noise amplification in the science band can be efficiently suppressed based on the updated single arm locking. Not only our method allows the suppression of the peaks, the high gain, low pulling rate, it can also serve for full year, without the potential risk of locking failure due to the arm length mismatch. We finally discuss the unified demonstration of the updated single arm locking, where both the local and the returned laser phase noises can be tuned to generate the expected arm-locking sensor actually. Our work could provide a powerful method for the arm locking in the future space-borne GW detectors.
102 - Han Du , Ge Jiang , Zijun Ke 2020
Meta-analysis combines pertinent information from existing studies to provide an overall estimate of population parameters/effect sizes, as well as to quantify and explain the differences between studies. However, testing the between-study heterogene ity is one of the most troublesome topics in meta-analysis research. Additionally, no methods have been proposed to test whether the size of the heterogeneity is larger than a specific level. The existing methods, such as the Q test and likelihood ratio (LR) tests, are criticized for their failure to control the Type I error rate and/or failure to attain enough statistical power. Although better reference distribution approximations have been proposed in the literature, the expression is complicated and the application is limited. In this article, we propose bootstrap based heterogeneity tests combining the restricted maximum likelihood (REML) ratio test or Q test with bootstrap procedures, denoted as B-REML-LRT and B-Q respectively. Simulation studies were conducted to examine and compare the performance of the proposed methods with the regular LR tests, the regular Q test, and the improved Q test in both the random-effects meta-analysis and mixed-effects meta-analysis. Based on the results of Type I error rates and statistical power, B-Q is recommended. An R package mathtt{boot.heterogeneity} is provided to facilitate the implementation of the proposed method.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا