ترغب بنشر مسار تعليمي؟ اضغط هنا

377 - Zheng Wang 2020
Network embedding, aiming to project a network into a low-dimensional space, is increasingly becoming a focus of network research. Semi-supervised network embedding takes advantage of labeled data, and has shown promising performance. However, existi ng semi-supervised methods would get unappealing results in the completely-imbalanced label setting where some classes have no labeled nodes at all. To alleviate this, we propose two novel semi-supervised network embedding methods. The first one is a shallow method named RSDNE. Specifically, to benefit from the completely-imbalanced labels, RSDNE guarantees both intra-class similarity and inter-class dissimilarity in an approximate way. The other method is RECT which is a new class of graph neural networks. Different from RSDNE, to benefit from the completely-imbalanced labels, RECT explores the class-semantic knowledge. This enables RECT to handle networks with node features and multi-label setting. Experimental results on several real-world datasets demonstrate the superiority of the proposed methods.
For high-level Autonomous Vehicles (AV), localization is highly security and safety critical. One direct threat to it is GPS spoofing, but fortunately, AV systems today predominantly use Multi-Sensor Fusion (MSF) algorithms that are generally believe d to have the potential to practically defeat GPS spoofing. However, no prior work has studied whether todays MSF algorithms are indeed sufficiently secure under GPS spoofing, especially in AV settings. In this work, we perform the first study to fill this critical gap. As the first study, we focus on a production-grade MSF with both design and implementation level representativeness, and identify two AV-specific attack goals, off-road and wrong-way attacks. To systematically understand the security property, we first analyze the upper-bound attack effectiveness, and discover a take-over effect that can fundamentally defeat the MSF design principle. We perform a cause analysis and find that such vulnerability only appears dynamically and non-deterministically. Leveraging this insight, we design FusionRipper, a novel and general attack that opportunistically captures and exploits take-over vulnerabilities. We evaluate it on 6 real-world sensor traces, and find that FusionRipper can achieve at least 97% and 91.3% success rates in all traces for off-road and wrong-way attacks respectively. We also find that it is highly robust to practical factors such as spoofing inaccuracies. To improve the practicality, we further design an offline method that can effectively identify attack parameters with over 80% average success rates for both attack goals, with the cost of at most half a day. We also discuss promising defense directions.
Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analy ze a scheme that takes advantage of the interplay between spin-orbit coupling and superexchange interactions, in the presence of a coherent drive, to deterministically generate macroscopic arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional (3D) optical lattices. The scheme dynamically generates cluster states without the need of engineered transport, and is robust in the presence of holes, a typical imperfection in cold atom Mott insulators. The protocol is of particular relevance for the new generation of 3D optical lattice clocks with coherence times $>10$ s, two orders of magnitude larger than the cluster state generation time. We propose the use of collective measurements and time-reversal of the Hamiltonian to benchmark the underlying Ising model dynamics and the generated many-body correlations.
79 - Kai Sun , Xiang-Jun Ye , Ya Xiao 2018
Einstein-Podolsky-Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the others state through local measurements. It reveals an additional concept of quantum nonlocality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering.
Occupying a position between entanglement and Bell nonlocality, Einstein-Podolsky-Rosen (EPR) steering has attracted increasing attention in recent years. Many criteria have been proposed and experimentally implemented to characterize EPR-steering. N evertheless, only a few results are available to quantify steerability using analytical results. In this work, we propose a method for quantifying the steerability in two-qubit quantum states in the two-setting EPR-steering scenario, using the connection between joint measurability and steerability. We derive an analytical formula for the steerability of a class of X-states. The sufficient and necessary conditions for two-setting EPRsteering are presented. Based on these results, a class of asymmetric states, namely, one-way steerable states, are obtained.
We present a hundred-watt-level linearly-polarized random fiber laser (RFL) pumped by incoherent broadband amplified spontaneous emission (ASE) source and prospect the power scaling potential theoretically. The RFL employs half-opened cavity structur e which is composed by a section of 330 m polarization maintained (PM) passive fiber and two PM high reflectivity fiber Bragg gratings. The 2nd order Stokes light centered at 1178 nm reaches the pump limited maximal power of 100.7 W with a full width at half-maximum linewidth of 2.58 nm and polarization extinction ratio of 23.5 dB. The corresponding ultimate quantum efficiency of pump to 2nd order Stokes light is 89.01%. To the best of our knowledge, this is the first demonstration of linearly-polarized high-order RFL with hundred-watt output power. Furthermore, the theoretical investigation indicates that 300 W-level linearly-polarized single-mode 1st order Stokes light can be obtained from incoherently pumped RFL with 100 m PM passive fiber.
The production of molecules from dual species atomic quantum gases has enabled experiments that employ molecules at nanoKelvin temperatures. As a result, every degree of freedom of these molecules is in a well-defined quantum state and exquisitely co ntrolled. These ultracold molecules open a new world of precision quantum chemistry in which quantum statistics, quantum partial waves, and even many-body correlations can play important roles. Moreover, to investigate the strongly correlated physics of many interacting molecular dipoles, we can mitigate lossy chemical reactions by controlling the dimensionality of the system using optical lattices formed by interfering laser fields. In a full three-dimensional optical lattice, chemistry can be turned on or off by tuning the lattice depth, which allows us to configure an array of long-range interacting quantum systems with rich internal structure. Such a system represents an excellent platform for gaining fundamental insights to complex materials based on quantum simulations and also for quantum information processing in the future.
The scaling of antiferromagnetic ordering temperature of corundum-type chromia films have been investigated. Neel temperature $T_N$ was determined from the effect of perpendicular exchange-bias on the magnetization of a weakly-coupled adjacent ferrom agnet. For a thick-film case, the validity of detection is confirmed by a susceptibility measurement. Detection of $T_N$ was possible down to 1-nm-thin chromia films. The scaling of ordering temperature with thickness was studied using different buffering materials, and compared with Monte-Carlo simulations. The spin-correlation length and the corresponding critical exponent were estimated, and they were consistent between experimental and simulation results. The spin-correlation length is an order of magnitude less than cubic antiferromagnets. We propose that the difference is from the change of number of exchange-coupling links in the two crystal systems.
In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities b oth theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state model, the proposed test shows that steering can be detected by the all-versus-nothing argument experimentally even in the presence of imprecision and errors. Our test can be implemented in many physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and trapped ions.
We propose a new light source based on having alkaline-earth atoms in an optical lattice collectively emit photons on an ultra-narrow clock transition into the mode of a high Q-resonator. The resultant optical radiation has an extremely narrow linewi dth in the mHz range, even smaller than that of the clock transition itself due to collective effects. A power level of order $10^{-12}W$ is possible, sufficient for phase-locking a slave optical local oscillator. Realizing this light source has the potential to improve the stability of the best clocks by two orders of magnitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا