ترغب بنشر مسار تعليمي؟ اضغط هنا

A connected graph $G$ is said to be $k$-connected if it has more than $k$ vertices and remains connected whenever fewer than $k$ vertices are deleted. In this paper, for a connected graph $G$ with sufficiently large order, we present a tight sufficie nt condition for $G$ with fixed minimum degree to be $k$-connected based on the $Q$-index. Our result can be viewed as a spectral counterpart of the corresponding Dirac type condition.
193 - Jun Liu , Bei Ding , Yuan Yao 2021
Materials exhibiting zero thermal expansion (ZTE), namely, volume invariance during temperature change, can resist thermal shock and are highly desired in modern industries as high-precision components. However, pure ZTE materials are rare, especiall y those that are metallic. Here, we report the discovery of a pure metallic ZTE material: an orthorhombic Mn1-xNixCoSi spiral magnet. The introduction of Ni can efficiently enhance the ferromagnetic exchange interaction and construct the transition from a spiral magnetic state to a ferromagnetic-like state in MnCoSi-based alloys. Systematic in situ neutron powder diffraction revealed a new cycloidal spiral magnetic structure in bc plane at ground state which would transform to the helical spiral in the ab plane with increasing temperature. Combined with Lorentz transmission electron microscopy techniques, the cycloidal and helical spin order coherently rotated at varying periods along the c axis during the magnetic transition. This spin rotation drove the continuous movement of the coupled crystalline lattice and induced a large negative thermal expansion along the a axis, eventually leading to a wide-temperature ZTE effect. Our work not only introduces a new ZTE alloy but also presents a new mechanism by which to discover or design ZTE magnets.
121 - Geng-Xin Xu , Chen Liu , Jun Liu 2021
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.
There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two -qubit states. We first give a description of two-valued qubit measurements in terms of measurement bias, strength, and reversibility, and derive useful tradeoff relations between them. Then, we derive one-sided monogamy relations that support the recent Conjecture in [S. Cheng {it et al.}, arXiv:2102.11574], that if the first pair of observers violate Bell nonlocality then a subsequent independent pair cannot. We also answer a question raised in [P. J. Brown and R. Colbeck, Phys. Rev. Lett. textbf{125}, 090401 (2020)], by showing that the conditions given therein for the recycling of one qubit by an arbitrarily large number of observers are sufficient but not necessary. Finally, we find that it is possible to share Bell nonlocality between multiple pairs of independent observers on both sides, if sufficiently many pairs of qubits are shared. Our results are based on a formalism that is applicable to more general problems in recycling entanglement, and hence is expected to aid progress in this field.
We propose the rhoLENT method, an extension of the unstructured Level Set / Front Tracking (LENT) method, based on the collocated Finite Volume equation discretization, that recovers exact numerical stability for the two-phase momentum convection wit h a range of density ratios, namely $rho^-/rho^+in [1, 10000]$. We provide the theoretical basis for the numerical inconsistency in the collocated finite volume equation discretization of the single-field two-phase momentum convection. The cause of the numerical inconsistency lies in the way the cell-centered density is computed in the new time step ($rho_c^{n+1}$). Specifically, if $rho_c^{n+1}$ is computed from the approximation of the fluid interface at $t^{n+1}$, and it is not computed by solving a mass conservation equation (or its equivalent), the two-phase momentum convection term will automatically be inconsistently discretized. We provide the theoretical justification behind using the auxiliary mass conservation equation to stabilize flows with strong density ratios. The evaluation of the face-centered (mass flux) density we base on the fundamental principle of mass conservation, used to model the single-field density, contrary to the use of different weighted averages of cell-centered single-field densities and alternative reconstructions of the mass flux density by other contemporary methods. Implicit discretization of the two-phase momentum convection term is achieved, removing the CFL stability criterion. Numerical stability is demonstrated in terms of the relative $L_infty$ velocity error norm with realistic viscosity and strong surface tension forces. The stabilization technique in the rhoLENT method is also applicable to other two-phase flow simulation methods that utilize the collocated unstructured Finite Volume Method to discretize single-field two-phase Navier-Stokes Equations.
118 - Haoxi Ran , Wei Zhuo , Jun Liu 2021
The prevalence of relation networks in computer vision is in stark contrast to underexplored point-based methods. In this paper, we explore the possibilities of local relation operators and survey their feasibility. We propose a scalable and efficien t module, called group relation aggregator. The module computes a feature of a group based on the aggregation of the features of the inner-group points weighted by geometric relations and semantic relations. We adopt this module to design our RPNet. We further verify the expandability of RPNet, in terms of both depth and width, on the tasks of classification and segmentation. Surprisingly, empirical results show that wider RPNet fits for classification, while deeper RPNet works better on segmentation. RPNet achieves state-of-the-art for classification and segmentation on challenging benchmarks. We also compare our local aggregator with PointNet++, with around 30% parameters and 50% computation saving. Finally, we conduct experiments to reveal the robustness of RPNet with regard to rigid transformation and noises.
126 - Jun Liu , Jiayao Gao , Sanjay Jha 2021
Localization is important for a large number of Internet of Things (IoT) endpoint devices connected by LoRaWAN. Due to the bandwidth limitations of LoRaWAN, existing localization methods without specialized hardware (e.g., GPS) produce poor performan ce. To increase the localization accuracy, we propose a super-resolution localization method, called Seirios, which features a novel algorithm to synchronize multiple non-overlapped communication channels by exploiting the unique features of the radio physical layer to increase the overall bandwidth. By exploiting both the original and the conjugate of the physical layer, Seirios can resolve the direct path from multiple reflectors in both indoor and outdoor environments. We design a Seirios prototype and evaluate its performance in an outdoor area of 100 m $times$ 60 m, and an indoor area of 25 m $times$ 15 m, which shows that Seirios can achieve a median error of 4.4 m outdoors (80% samples < 6.4 m), and 2.4 m indoors (80% samples < 6.1 m), respectively. The results show that Seirios produces 42% less localization error than the baseline approach. Our evaluation also shows that, different to previous studies in Wi-Fi localization systems that have wider bandwidth, time-of-fight (ToF) estimation is less effective for LoRaWAN localization systems with narrowband radio signals.
Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Theref ore, screening of microbe-drug associations can benefit greatly drug research and development. With the increase of microbial genomic and pharmacological datasets, we are greatly motivated to develop an effective computational method to identify new microbe-drug associations. In this paper, we proposed a novel method, Graph2MDA, to predict microbe-drug associations by using variational graph autoencoder (VGAE). We constructed multi-modal attributed graphs based on multiple features of microbes and drugs, such as molecular structures, microbe genetic sequences, and function annotations. Taking as input the multi-modal attribute graphs, VGAE was trained to learn the informative and interpretable latent representations of each node and the whole graph, and then a deep neural network classifier was used to predict microbe-drug associations. The hyperparameter analysis and model ablation studies showed the sensitivity and robustness of our model. We evaluated our method on three independent datasets and the experimental results showed that our proposed method outperformed six existing state-of-the-art methods. We also explored the meaningness of the learned latent representations of drugs and found that the drugs show obvious clustering patterns that are significantly consistent with drug ATC classification. Moreover, we conducted case studies on two microbes and two drugs and found 75%-95% predicted associations have been reported in PubMed literature. Our extensive performance evaluations validated the effectiveness of our proposed method.
In this paper, we consider a Keller-Segel type fluid model, which is a kind of Euler-Poisson system with a self-gravitational force. We show that similar to the parabolic case, there is a critical mass $8pi$ such that if the initial total mass $M$ is supercritical, i.e., $M> 8pi$, then any weak entropy solution with the same mass $M$ must blow up in finite time. The a priori estimates of weak entropy solutions for critical mass $M=8pi$ and subcritical mass $M<8pi$ are also obtained.
127 - Huimin Xu , Yi Bu , Meijun Liu 2021
Teamwork is cooperative, participative and power sharing. In science of science, few studies have looked at the impact of team collaboration from the perspective of team power and hierarchy. This research examines in depth the relationships between t eam power and team success in the field of Computer Science (CS) using the DBLP dataset. Team power and hierarchy are measured using academic age and team success is quantified by citation. By analyzing 4,106,995 CS teams, we find that high power teams with flat structure have the best performance. On the contrary, low-power teams with hierarchical structure is a facilitator of team performance. These results are consistent across different time periods and team sizes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا