ترغب بنشر مسار تعليمي؟ اضغط هنا

We developed several pieces of software to enable the tracking of provenance information for the large-scale complex astronomical observatory CTA, the Cherenkov Telescope Array. Such major facilities produce data that will be publicly released to a l arge community of scientists. There are thus strong requirements to ensure data quality, reliability and trustworthiness. Among those requirements, traceability and reproducibility of the data products have to be included in the development of large projects. Those requirements can be answered by structuring and storing the provenance information for each data product. We followed the Provenance data model, currently discussed at the IVOA, and implemented solutions to collect provenance information during the CTA data processing and the execution of jobs on a work cluster.
The Cherenkov Telescope Array (CTA) observatory will probe the non-thermal universe above 20 GeV up to several hundreds of TeV with a significant improvement in sensitivity and angular resolution compared to current experiments. Its outstanding capab ilities will allow to increase the number of extragalactic cosmic accelerators detected at very high energy (VHE) and therefore to better constrain the population of VHE accelerators and the gamma-ray absorption processes in the intergalactic medium. For the first time in the history of imaging atmospheric Cherenkov telescopes (IACTs), CTA will be an open observatory and high-level data will be made available to the astronomical community. Gammapy is an open-source Python package developed by the Cherenkov telescope community that provides tools to simulate the gamma-ray sky and analyse IACT data. The versatile architecture of, and steady user contributions to Gammapy enable a large variety of high-level data analyses. Examples of Gaammapy applications are presented, particularly in the context of extragalactic science with CTA.
Gammapy is a Python package for high-level gamma-ray data analysis built on Numpy, Scipy and Astropy. It enables us to analyze gamma-ray data and to create sky images, spectra and lightcurves, from event lists and instrument response information, and to determine the position, morphology and spectra of gamma-ray sources. So far Gammapy has mostly been used to analyze data from H.E.S.S. and Fermi-LAT, and is now being used for the simulation and analysis of observations from the Cherenkov Telescope Array (CTA). We have proposed Gammapy as a prototype for the CTA science tools. This contribution gives an overview of the Gammapy package and project and shows an analysis application example with simulated CTA data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا