ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the restframe UV emission from the starbursting galaxy HFLS3 at z=6.34, discovered in Herschel/SPIRE data due to its red color in the submm wavelengths from 250-500 um. The apparent inst. SFR of HFLS3 inferred from the total FIR luminosity measured with over 15 photometric data points between 100 to 1000 um is 2900 Msun/yr. Keck/NIRC2 Ks band adaptive optics imaging data showed two potential NIR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z=2.1 while the southern galaxy was assumed to HFLS3s NIR counterpart. New HST/WFC3 and ACS imaging data show both optically bright galaxies are in the foreground at z<6. A new lensing model based on HST data and mm-wave continuum emission yields a magnification of 2.2+/-0.3. The lack of multiple imaging constrains the lensing magnification to be lower than either 2.7 or 3.5 at the 95% confidence level for the two scenarios, which attribute one or two components to HFLS3 in the source plane. Correcting for gravitational lensing, the inst. SFR is 1320 Msun/yr with the 95% confidence lower limit around 830 Msun/yr. Using models for the restframe UV to FIR SED, the ave. SFR over the last 100 Myr is around 660 Msun/yr. The dust and stellar masses of HFLS3 from the same SED models are 3x10^8 Msun and ~5x10^10 Msun, respectively, with large systematic uncertainties on assumptions related to the SED model. With HST/WFC3 images we also find diffuse NIR emission about 0.5 (~3 kpc) SW of HFLS3 that remains undetected in the ACS data. The emission has a photometric redshift consistent with either z~6 or a dusty galaxy template at z~2. If at the same redshift as HFLS3 the detected diffuse emission could be part of the complex merger system that could be triggering the starburst. Alternatively, it could be part of the foreground structure at z~2.1 that is responsible for lensing of HFLS3.
We study the far-infrared properties of 498 Lyman Alpha Emitters (LAEs) at z=2.8, 3.1 and 4.5 in the Extended Chandra Deep Field-South, using 250, 350 and 500 micron data from the Herschel Multi-tiered Extragalactic Survey (HerMES) and 870 micron dat a from the LABOCA ECDFS Submillimeter Survey (LESS). None of the 126, 280 or 92 LAEs at z=2.8, 3.1 and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching $1sigma$ depths of ~0.1 to 0.4 mJy. The LAEs are also undetected at $ge3sigma$ in the stacks, although a $2.5sigma$ signal is observed at 870 micron for the z=2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including a M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star-formation rates of the LAEs. These star-formation rates are then combined with those inferred from the Ly$alpha$ and UV emission to determine lower limits on the LAEs Ly$alpha$ escape fraction ($f_{rm esc}($Ly$alpha$)). For the Sd SED template, the inferred LAEs $f_{rm esc}($Ly$alpha$) are $gtrsim30%$ ($1sigma$) at z=2.8, 3.1 and 4.5, which are all significantly higher than the global $f_{rm esc}($Ly$alpha$) at these redshifts. Thus, if the LAEs $f_{rm esc}($Ly$alpha$) follows the global evolution then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE $f_{rm esc}($Ly$alpha$) of ~10 to 20% ($1sigma$), all of which are slightly higher than the global evolution of $f_{rm esc}($Ly$alpha$) but consistent with it at the 2 to 3$sigma$ level.
We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 square degrees of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14pm0.04deg^{-2}. The selected sources have 500um flux densities ( S_500) greater than 100mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31pm0.06deg^{-2}) gravitationally lensed SMG candidates with S_500=80--100mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32--74% of our S_500>100mJy candidates are strongly gravitationally lensed (mu>2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S_500=100mJy are magnified by factors of ~9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500micron flux densities less than 30mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 micron. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of ~0.01 in the source plane.
We use spitzer-IRAC data to identify near-infrared counterparts to submillimeter galaxies detected with Herschel-SPIRE at 250um in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Using a likelihood ratio analysis we identify 146 rel iable IRAC counterparts to 123 SPIRE sources out of the 159. We find that, compared to the field population, the SPIRE counterparts occupy a distinct region of 3.6 and 4.5um color-magnitude space, and we use this property to identify a further 23 counterparts to 13 SPIRE sources. The IRAC identification rate of 86% is significantly higher than those that have been demonstrated with wide-field ground-based optical and near-IR imaging of Herschel fields. We estimate a false identification rate of 3.6%, corresponding to 4 to 5 sources. Among the 73 counterparts that are undetected in SDSS, 57 have both 3.6 and 4.5um coverage. Of these 43 have [3.6] - [4.5]> 0 indicating that they are likely to be at z > 1.4. Thus, ~ 40% of identified SPIRE galaxies are likely to be high redshift (z > 1.4) sources. We discuss the statistical properties of the IRAC-identified SPIRE galaxy sample including far-IR luminosities, dust temperatures, star-formation rates, and stellar masses. The majority of our detected galaxies have 10^10 to 10^11 L_sun total IR luminosities and are not intense starbursting galaxies as those found at z ~ 2, but they have a factor of 2 to 3 above average specific star-formation rates compared to near-IR selected galaxy samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا