ترغب بنشر مسار تعليمي؟ اضغط هنا

SDSSJ092712.65+294344.0 was identified by the SDSS as a quasar, but has the unusual property of having two emission line systems offset by 2650 km/s. One of these contains the usual combination of broad and narrow lines, the other only narrow lines. In the first paper commenting on this system (Komossa et al. 2008), it was interpreted as a galaxy in which a pair of black holes had merged, imparting a several thousand km/s recoil to the new, larger black hole. In two other papers (Bogdanovic, Eracleous & Sigurdsson 2008; Dotti et al. 2008), it was interpreted as a small-separation binary black hole. We propose a new interpretation: that this system is a more distant analog of NGC1275, a large and a small galaxy interacting near the center of a rich cluster.
Numerical simulation of magnetohydrodynamic (MHD) turbulence makes it possible to study accretion dynamics in detail. However, special effort is required to connect inflow dynamics (dependent largely on angular momentum transport) to radiation (depen dent largely on thermodynamics and photon diffusion). To this end we extend the flux-conservative, general relativistic MHD code HARM from axisymmetry to full 3D. The use of an energy conserving algorithm allows the energy dissipated in the course of relativistic accretion to be captured as heat. The inclusion of a simple optically thin cooling function permits explicit control of the simulated disks geometric thickness as well as a direct calculation of both the amplitude and location of the radiative cooling associated with the accretion stresses. Fully relativistic ray-tracing is used to compute the luminosity received by distant observers. For a disk with aspect ratio H/r ~ 0.1 accreting onto a black hole with spin parameter a/M = 0.9, we find that there is significant dissipation beyond that predicted by the classical Novikov-Thorne model. However, much of it occurs deep in the potential, where photon capture and gravitational redshifting can strongly limit the net photon energy escaping to infinity. In addition, with these parameters and this radiation model, significant thermal and magnetic energy remains with the gas and is accreted by the black hole. In our model, the net luminosi ty reaching infinity is 6% greater than the Novikov-Thorne prediction. If the accreted thermal energy were wholly radiated, the total luminosity of the accretion flow would be ~20% greater than the Novikov-Thorne value.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا