ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear response of simple (i.e., condensed) Bose-Einstein condensates is known to lead to the Bogoliubov- de Gennes equations. Here, we derive linear response for fragmented Bose-Einstein condensates, i.e., for the case where the many-body wave funct ion is not a product of one, but of several single-particle states (orbitals). Our approach is based on the number-conserving variational time-dependent mean field theory [O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Lett. A 362, 453 (2007)], which describes the time evolution of best-mean field states. Correspondingly, we call our linear response theory for fragmented states LR-BMF. In the derivation it follows naturally that excitations are orthogonal to the ground-state orbitals. As applications excitation spectra of Bose-Einstein condensates in double-well potentials are calculated. Both symmetric and asymmetric double-wells are studied for several interaction strengths and barrier heights. The cases of condensed and two-fold fragmented ground states are compared. Interestingly, even in such situations where the response frequencies of the two cases are computed to be close to each other, which is the situation for the excitations well below the barrier, striking differences in the density response in momentum space are found. For excitations with an energy of the order of the barrier height, both the energies and the density response of condensed and fragmented systems are very different. In fragmented systems there is a class of swapped excitations where an atom is transfered to the neighboring well. The mechanism of its origin is discussed. In asymmetric wells, the response of a fragmented system is purely local (i.e., finite in either one or the other well) with different frequencies for the left and right fragments.
We analyze the emergence of Shapiro resonances in tunnel-coupled Bose-Einstein condensates, realizing a bosonic Josephson junction. Our analysis is based on an experimentally relevant implementation using magnetic double well potentials on an atomchi p. In this configuration the potential bias (implementing the junction voltage) and the potential barrier (realizing the Josephson link) are intrinsically coupled. We show that the dynamically driven system exhibits significantly enhanced Shapiro resonances which will facilitate experimental observation. To describe the systems response to the dynamic drive we compare a single-mode Gross-Pitaevskii (GP) description, an improved two-mode (TM) model and the self-consistent multi-configurational time dependent Hartree for Bosons (MCTDHB) method. We show that in the case of significant atom-atom interactions or strong driving, the spatial dynamics of the involved modes have to be taken into account, and only the MCTDHB method allows reliable predictions.
We theoretically analyze a Mach-Zehnder interferometer with trapped condensates, and find that it is surprisingly stable against the nonlinearity induced by inter-particle interactions. The phase sensitivity, which we study for number squeezed input states, can overcome the shot noise limit and be increased up to the Heisenberg limit provided that a Bayesian or Maximum-Likelihood phase estimation strategy is used. We finally demonstrate robustness of the Mach-Zehnder interferometer in presence of interactions against condensate oscillations and a realistic atom counting error.
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long m easurement times and precise readout. Ultra cold atoms can be precisely manipulated at the quantum level, held for very long times in traps, and would therefore be an ideal setting for interferometry. In this paper we discuss how the non-linearities from atom-atom interactions on one hand allow to efficiently produce squeezed states for enhanced readout, but on the other hand result in phase diffusion which limits the phase accumulation time. We find that low dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control the achievable minimal detectable interaction energy $Delta E^{rm min}$ is on the order of 0.001 times the chemical potential of the BEC in the trap. From there we have to conclude that for more precise measurements with atom interferometers more sophisticated strategies, or turning off the interaction induced dephasing during the phase accumulation stage, will be necessary.
We theoretically analyze atom interferometry based on trapped ultracold atoms, and employ optimal control theory in order to optimize number squeezing and condensate trapping. In our simulations, we consider a setup where the confinement potential is transformed from a single to a double well, which allows to split the condensate. To avoid in the ensuing phase-accumulation stage of the interferometer dephasing due to the nonlinear atom-atom interactions, the atom number fluctuations between the two wells should be sufficiently low. We show that low number fluctuations (high number squeezing) can be obtained by optimized splitting protocols. Two types of solutions are found: in the Josephson regime we find an oscillatory tunnel control and a parametric amplification of number squeezing, while in the Fock regime squeezing is obtained solely due to the nonlinear coupling, which is transformed to number squeezing by peaked tunnel pulses. We study splitting and squeezing within the frameworks of a generic two-mode model, which allows us to study the basic physical mechanisms, and the multi-configurational time dependent Hartree for bosons method, which allows for a microscopic modeling of the splitting dynamics in realistic experiments. Both models give similar results, thus highlighting the general nature of these two solution schemes. We finally analyze our results in the context of atom interferometry.
We optimize number squeezing when splitting a mesoscopic Bose Einstein condensate. Applying optimal control theory to a realistic description of the condensate allowed us to identify a form of the splitting ramp which drastically outperforms the adia batic splitting. The results can be interpreted in terms of a generic two-mode model mapped onto a parametric harmonic oscillator. This optimal route to squeezing paves the way to a much longer phase coherence and atom interferometry close to the Heisenberg limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا