ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first high-resolution X-ray study of emission line variability with superorbital phase in the neutron star binary LMC X-4. Our analysis provides new evidence from X-ray spectroscopy confirming accretion disk precession as the origin of the superorbital period. The spectra, obtained with the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and the XMM-Newton Reflection Grating Spectrometer (RGS), contain a number of emission features, including lines from hydrogen-like and helium-like species of N, O, Ne, and Fe, a narrow O VII RRC, and fluorescent emission from cold Fe. We use the narrow RRC and the He-alpha triplets to constrain the temperature and density of the (photoionized) gas. By comparing spectra from different superorbital phases, we attempt to isolate the contributions to line emission from the accretion disk and the stellar wind. There is also evidence for highly ionized iron redshifted and blueshifted by ~25,000 km/s. We argue that this emission originates in the inner accretion disk, and show that the emission line properties in LMC X-4 are natural consequences of accretion disk precession.
We present results from Chandra HETGS (250 ks over two epochs) and XMM-Newton EPIC and RGS (60 ks) observations of NGC 2110, which has been historically classified as a Narrow Emission Line Galaxy galaxy. Our results support the interpretation that t he source is a Seyfert 2 viewed through a patchy absorber. The nuclear X-ray spectrum of the source is best described by a power law of photon index $Gamma$ ~1.7, modified by absorption from multiple layers of neutral material at a large distance from the central supermassive black hole. We report the strong detections of Fe K$alpha$ and Si K$alpha$ lines, which are marginally resolved with the Chandra HETGS, and we constrain the emission radius of the fluorescing material to >1 pc. There is some evidence for modest additional broadening at the base of the narrow Fe K$alpha$ core with a velocity ~4500 km s$^{-1}$. We find tentative evidence for ionized emission (O VIII Ly $alpha$, an O VIII RRC feature, and possibly a Ne IX forbidden line) in the Chandra MEG and XMM-Newton RGS spectra, which could be associated with the known extended X-ray emission that lies ~160 pc from the nucleus. We suggest that the $10^{23}$ cm$^{-2}$ partially covering absorber originates in broad-line region clouds in the vicinity of the AGN, and that the $3times10^{22}$ cm$^{-2}$ coverer is likely to have a more distant origin and have a flattened geometry in order to allow the small-scale radio jet to escape.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا