ترغب بنشر مسار تعليمي؟ اضغط هنا

A Molecular Dynamics (MD) study of static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modelled by the classical pair potential proposed by Oeffner and Elliott (OE) [Oeffner R D an d Elliott S R 1998, Phys. Rev. B, 58, 14791]. We compare our results to experiments and previous simulations. In addition, an ab initio method, the so-called Car-Parrinello Molecular Dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO2, the structure predicted by CPMD is only slightly softer than that resulting from the classical MD. In contrast to earlier simulations, both the static structure and dynamic properties are in very good agreement with pertinent experimental data. MD simulations with the OE potential are also used to study the relaxation dynamics. As previously found for SiO2, for high temperatures the dynamics of molten GeO2 is compatible with a description in terms of mode coupling theory.
128 - Juergen Horbach 2008
The structural and dynamic properties of silica melts under high pressure are studied using molecular dynamics (MD) computer simulation. The interactions between the ions are modeled by a pairwise-additive potential, the so-called CHIK potential, tha t has been recently proposed by Carre et al. The experimental equation of state is well-reproduced by the CHIK model. With increasing pressure (density), the structure changes from a tetrahedral network to a network containing a high number of five- and six-fold Si-O coordination. In the partial static structure factors, this change of the structure with increasing density is reflected by a shift of the first sharp diffraction peak towards higher wavenumbers q, eventually merging with the main peak at densities around 4.2 g/cm^3. The self-diffusion constants as a function of pressure show the experimentally-known maximum, occurring around a pressure of about 20 GPa.
When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by c omputer simulations of the Asakura-Oosawa model for colloid-polymer mixtures, but applications to other soft matter systems (e.g. confined polymer blends) will also be mentioned. Typically a wall will prefer one of the phases, and hence the composition of the system in the direction perpendicular to the walls will not be homogeneous. If both walls are of the same kind, this effect leads to a distortion of the phase diagram of the system in thin film geometry, in comparison with the bulk, analogous to the phenomenon of capillary condensation of simple fluids in thin capillaries. In the case of competing walls, where both walls prefer different phases of the two phases coexisting in the bulk, a state with an interface parallel to the walls gets stabilized. The transition from the disordered phase to this soft mode phase is rounded by the finite thickness of the film and not a sharp phase transition. However, a sharp transition can occur where this interface gets localized at (one of) the walls. The relation of this interface localization transition to wetting phenomena is discussed. Finally, an outlook to related phenomena is given, such as the effects of confinement in cylindrical pores on the phase behavior, and more complicated ordering phenomena (lamellar mesophases of block copolymers or nematic phases of liquid crystals under confinement).
A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of alpha-quartz are well-reproduced, showing the transferability of the new potential.
76 - Ali Kerrache 2008
The melting and crystallization of Al50Ni50} are studied by means of molecular dynamics computer simulations, using a potential of the embedded atom type to model the interactions between the particles. Systems in a slab geometry are simulated where the B2 phase of AlNi in the middle of an elongated simulation box is separated by two planar interfaces from the liquid phase, thereby considering the (100) crystal orientation. By determining the temperature dependence of the interface velocity, an accurate estimate of the melting temperature is provided. The value k=0.0025 m/s/K for the kinetic growth coefficient is found. This value is about two orders of magnitude smaller than that found in recent simulation studies of one-component metals. The classical Wilson-Frenkel model is not able to describe the crystal growth kinetics on a quantitative level. We argue that this is due to the neglect of diffusion processes in the liquid-crystal interface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا