ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the collapse and revival of Ramsey fringe visibility when a spatially dependent phase is imprinted in the coherences of a trapped ensemble of two-level atoms. The phase is imprinted via the light shift from a Gaussian laser beam which co uples the dynamics of internal and external degrees of freedom for the atoms in an echo spectroscopy sequence. The observed revivals are directly linked to the oscillatory motion of atoms in the trap. An understanding of the effect is important for quantum state engineering of trapped atoms.
We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 us using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase evolution of the atomic coherence during the storage interval.
The Schrodinger motion of a charged quantum particle in an electromagnetic potential can be simulated by the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This phenomenon can be implemented with slow light propagating through an a gas of double-Lambda atoms in an electromagnetically-induced transparency setting with spatially varied control fields. It can lead to a reduced dispersion of signal photons and a topological phase shift of Aharonov-Bohm type.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا