ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first results from the CHANG-ES survey, a new survey of 35 edge-on galaxies to search for both in-disk as well as extra-planar radio continuum emission. The motivation and science case for the survey are presented in a companion paper (Paper I). In this paper (Paper II), we outline the observations and data reduction steps required for wide-band calibration and mapping of EVLA data, including polarization, based on C-array test observations of NGC 4631. With modest on-source observing times (30 minutes at 1.5 GHz and 75 minutes at 6 GHz for the test data) we have achieved best rms noise levels of 22 and 3.5 $mu$Jy beam$^{-1}$ at 1.5 GHz and 6 GHz, respectively. New disk-halo features have been detected, among them two at 1.5 GHz that appear as loops in projection. We present the first 1.5 GHz spectral index map of NGC 4631 to be formed from a single wide-band observation in a single array configuration. This map represents tangent slopes to the intensities within the band centered at 1.5 GHz, rather than fits across widely separated frequencies as has been done in the past and is also the highest spatial resolution spectral index map yet presented for this galaxy. The average spectral index in the disk is $baralpha_{1.5 GHz},=,-0.84,pm,0.05$ indicating that the emission is largely non-thermal, but a small global thermal contribution is sufficient to explain a positive curvature term in the spectral index over the band. Two specific star forming regions have spectral indices that are consistent with thermal emission. Polarization results (uncorrected for internal Faraday rotation) are consistent with previous observations and also reveal some new features. On broad scales, we find strong support for the notion that magnetic fields constrain the X-ray emitting hot gas.
We introduce a new survey to map the radio continuum halos of a sample of 35 edge-on spiral galaxies at 1.5 GHz and 6 GHz in all polarization products. The survey is exploiting the new wide bandwidth capabilities of the Karl G. Jansky Very Large Arra y (i.e. the Expanded Very Large Array, or EVLA) in a variety of array configurations (B, C, and D) in order to compile the most comprehensive data set yet obtained for the study of radio halo properties. This is the first survey of radio halos to include all polarization products. In this first paper, we outline the scientific motivation of the survey, the specific science goals, and the expected improvements in noise levels and spatial coverage from the survey. Our goals include investigating the physical conditions and origin of halos, characterizing cosmic ray transport and wind speed, measuring Faraday rotation and mapping the magnetic field, probing the in-disk and extraplanar far-infrared - radio continuum relation, and reconciling non-thermal radio emission with high-energy gamma-ray models. The sample size allows us to search for correlations between radio halos and other properties, including environment, star formation rate, and the presence of AGNs. In a companion paper (Paper II) we outline the data reduction steps and present the first results of the survey for the galaxy, NGC 4631.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا